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Sources: This lecture loosely follows Cover and Thomas Chapter 5 and Yeung

Chapter 3. As usual, some of the text and equations are taken directly from those

sources.

Coding theory is the study of how information can be packaged for trans-
port. Let us begin with an example. Suppose that we have a sequence of
symbols

A, C, E, B, B, D, E, A, C, D, D, A, B, A, E, A, B, D, C, A, . . .

drawn from an alphabet X = {A, B, C, D, E}, and we want to send someone
a message telling them this sequence. Our transmission channel allows only
binary coding, so our message has to take the form of a string of zeros and
ones. How can we code this message?

One way to do it is to simply use a block code that maps each letter into
a binary codeword:

A 000
B 001
C 010
D 011
E 100

Thus the message above would look like

000010100001001011100000010 . . .
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Since the code words are constant length, we can easily go in and group them
before decoding:

000|010|100|001|001|011|100|000|010 . . .

One can see right away that this coding is sort of inefficient, because we are
not making use of the code words 101, 110, and 111. Indeed, we’re using
three bits to transmit at most log 5 bits of information.

Another coding approach would be to build a set of variable-length code-
words.

One might want to use a code such as the following:

A 0
B 1
C 00
D 01
E 11

but in this case, there is no way to uniquely decode a message. For example

00101 . . .

could be AABAB or CBAC or ADD or any number of other possibilities.
We can use variable-length code words so long as we allow the receiver to
uniquely decode the message. One way to do this, for example, is to have a
unique “end-of-keyword” symbol. We could let the number of 1’s to indicate
the letter and using 0’s to indicate the ”spaces” between codewords.

A 0
B 10
C 110
D 1110
E 11110

Then our message would look like

01101111010101110111100110 . . .

Here, we can use the 0’s to group the symbols and decode:
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0|110|11110|10|10|1110|11110|011|0 . . .

In general, will this latter approach be more efficient, or less efficient,
than the former approach? We need a definition of efficiency. The obvious
definition is the expected codeword length per source symbol. Where l(x) is
the length of the codeword necessary to encode symbol x, we are interested
in the expected codeword length

L(C) =
∑

x∈X

p(x)l(x).

For our example source above, the expected codeword length of the first
code is simply 3, since in all cases the codewords are of length three. For the
second code, the expected codeword length depends on the relative frequency
of the symbols in the original message. If a message has lots of As, that the
latter coding will be very efficient, because many of the codewords in the
message will be ”0”, i.e., one bit long instead of three as in the former code.
If instead a message has lots of Es, the latter code will be very inefficient,
because then man of the codewords in the coded message will be ”11110”, i.e.,
five bits long instead of three. Thus we see that the efficiency of a system for
encoding information depends on the statistical properties of the information
to be encoded. Coding theory allows us to explore this relationship, often
with a focus on designing codes that will be optimal or near-to-optimal for
any given type of source data.

Notice the close relationship between the two following problems:

• Given a source of random variables X drawn from alphabet X with
probabilities p(x), find an efficient way of coding the source using an
alphabet D.

• Given a data file, find a way of efficiently compressing this data.

With this out of the way, we begin by looking at prefix codes. Prefix codes
are those codes for which one can decode the message string uniquely without
having to look forward in the string, because you can always figure out when
a codeword has ended without needing to look at see what codeword comes
next. Our code with terminating zeros is a very straightforward example of
a prefix code: we always know when we’ve reached the end of a codeword,
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because every code word ends with zero and every zero signals the end of
a codeword. Note that of course all prefix codes are uniquely decodable,
though not all uniquely decodable codes are prefix codes (see Cover and
Thomas table 5.1 for an example).

Theorem 1 A code is a prefix code if and only if no codeword is a prefix
(the first part of) any other codeword.

Proof: If codeword i is a prefix of codeword j, then after receiving the
symbols for codeword i, one needs to look forward at the subsequent symbols
to determine whether the full codeword is i or j, and thus the code is not a
prefix code. This proves the “only if” direction. To prove the “if” direction,
we note that when we use a code where no codeword is a prefix of any other,
we will know with certainty that we have received the full codeword when we
receive a string of symbols that adds up to this codeword. because no other
codeword starts that same way. Thus we have a prefix code.

Now that we have this simple test for a prefix code, we can prove one of
the main theorems in coding theory.

Theorem 2 For any prefix code using an alphabet of size D, the codeword
lengths l1, l2, . . . , lm satisfy ∑

i

D−li ≤ 1.

Proof: Take a code with an alphabet of size D, and suppose that the longest
code word is of length w. Thus for any non-singular code (where each symbol
gets a unique codeword) we can have at most Dw+Dw−1+. . .+D codewords.
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But we are looking at prefix codes here — and thus no codeword can
be the prefix of any other codeword. The largest number of codewords our
prefix code can have is then Dw, i.e., all codewords have the maximal length.
If any of our codewords are shorter, say of length l < w, that now rules out
Dw−l potential other codewords.

So suppose that we have codewords 1, 2, . . . , m with lengths l1, l2, . . . , li.
Then we end up ruling out many descendent codewords by our no-prefixes
rule, namely

∑
i D

w−lidescendants. Thus the actual number of codewords we
can have is Dw −

∑
i D

w−li ≥ 0, giving us Dw >
∑

i D
w−li. Dividing through

by Dw (which is positive) we get the Kraft inequality:

1 ≥
∑

i

D−li.

This puts a powerful lower bound on the average codeword length L(C).
Next, we will see how close we can come to achieving this bound, and we
will formalize the relationship between this bound and the entropy rate of
the source.

We can also prove the converse – than for any set of lengths satisfying
the Kraft inequality, we can construct a prefix code with code words of those
lengths.

Theorem 3 Given any set of codeword lengths l1, l2, . . . , lm that satisfy the
Kraft inequality ∑

i

D−li ≤ 1,
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there exists prefix code with m codewords with precisely those lengths.

The proof is by supplying a construction. To construct such a set of code-
words, create a tree as we did in the proof of the Kraft inequality. Order the
codeword lengths from shortest to longest, then start with the first codeword
length l1. Assign the first symbol to the first codeword with that length,
and remove all descendents. Assign the second symbol to the first codeword
remaining on the tree with length l2. Again remove all descendents. Con-
tinue until all symbols are assigned a codeword. One will always have enough
remaining branches to assign a keyword to each length, by the calculations
performed in the proof of Kraft’s inequality.

We can then prove a relation between the expected length L(C) of a prefix
code and the entropy of the source. Here we simply state the theorem

Theorem 4 The expected length of a prefix code L(C) using a D-symbol
alphabet is greater than or equal to the entropy base D of the source:

L(C) ≥ HD(X)

So we can’t do better than the entropy rate when coding a source. We
can get quite close to the entropy rate, though, using a very straightforward
coding procedure suggested by Shannon. This procedure, which we will
explore in the next lecture, gives an expected code length below HD(X) + 1.
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