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Costly signalling theory is commonly invoked as an explanation for how honest

communication can be stable when interests conflict. However, the signal costs

predicted by costly signalling models often turn out to be unrealistically

high. These models generally assume that signal cost is determinate. Here, we

consider the case where signal cost is instead stochastic. We examine both

discrete and continuous signalling games and show that, under reasonable

assumptions, stochasticity in signal costs can decrease the average cost at equili-

brium for all individuals. This effect of stochasticity for decreasing signal costs is

a fundamental mechanism that probably acts in a wide variety of circumstances.
1. Introduction
Signalling and communication abound in nature and human society [1]. Often,

communication takes place between entities that do not share entirely co-

incident interests. Yet, honest communication frequently persists in spite of

incentives to deceive. Evolutionary biologists and economists alike have devel-

oped a suite of game-theoretic models that aim to explain how communication

can originate and be maintained among individuals with partially conflicting

interests [2,3]. Biologists have paid particular attention to the role of signal

cost in stabilizing communication [4]. Costly signalling models propose that

appropriate signal costs can facilitate honest communication by making decep-

tive signals so expensive that they become counterproductive. While this class

of signalling models allows communication at equilibrium, honesty often comes

at considerable cost. Signal costs can be so high that all participants in a costly sig-

nalling interaction end up worse off at the signalling equilibrium than in an

alternative equilibrium in which no communication takes place [5]. For this

reason, there has been considerable interest in understanding how honest signal-

ling can occur without high cost. Researchers have noted that honest signals need

not be costly so long as dishonest signals are expensive [6–9] and proposed that

mechanisms such as punishment or spatial structure can further reduce signal

costs while allowing honesty to persist [10–16]. These analyses have generally

assumed determinate signal costs. In this paper, we study signalling models

with stochastic costs and show that this simple difference can have substantial

consequences for individuals in terms of their average costs at equilibrium.

We examine a type of action–response game where a signaller with private

information may send a signal to a receiver who must then select a response.

Sending a signal carries a cost, which depends on the condition of the signaller.

We study the case when this cost is a random variable, and characterize how

the average costs at equilibrium depend on the risk preferences of signallers.

We show that, when signallers have decreasing absolute risk aversion (DARA;

defined in the following section), stochasticity facilitates honest communication

at lower expected cost. We present two models: a discrete action–response

game with two signaller qualities, two signals and two responses, and a con-

tinuous signalling game with a continuum of qualities, signals and responses.
2. Measures of risk preferences
To study the relative costliness of signals that involve risk, we must know how an

individual’s welfare depends on the risk taken. In a biological context, this means

we must know how the resource being risked translates into reproductive success

or fitness. Many types of resources exhibit diminishing returns. That is, a needy
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Figure 1. The signaller has a concave utility function u(w). The benefit of
being accepted by the signal receiver is a utility increment of magnitude
b. The minimal cost for stable honest signalling is cmin.
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individual’s fitness will increase more than a well-off indi-

vidual’s fitness if they both obtain the same amount of

additional resources. In an economic context, this is the same

as saying that individuals have concave utility functions—or

equivalently that they are risk averse. An example of such a

function is illustrated in figure 1. In the economic context, uti-

lity is the analogue of fitness and wealth is the resource of

interest. We present our models within an economic frame-

work because economics provides a well-developed theory of

risk and precise terminology. However, the models we present

are general, and we interpret the implications of our results for

biological contexts as well as economic ones.

With the above points in mind, we describe some economic

terminology for risk preferences. Any statement about the risk

preferences of an individual can be translated into a statement

about the shape of her utility function, u. If an individual pre-

fers a sure thing of getting $10 to a bet that has an expected

pay-off of $10, that is the individual is risk averse, this is equiv-

alent to saying that the second derivative of u is negative. If an

individual is less willing to risk $10 when poor than when rich,

then her utility function exhibits DARA. The geometric equiv-

alent is that 2u00/u0 is decreasing. The assumption of DARA is

standard in economics and is supported by empirical studies in

humans [17]. In the biological context, assuming DARA means

that the fitness consequences of risking resources are more

grave when resources are rare. The extent to which this is

the norm in nature is an empirical question, but it would be

surprising if having more resources did not often put an

individual in a position to be more willing to risk some of them.
3. Discrete model
In order to understand how risk influences costly signalling,

we will compare two signalling games, one in which the

signals involve risk and one in which they do not.

3.1. Deterministic signalling
We first establish the baseline for comparison: a standard costly

signalling game in which individuals signal their wealth

by deterministically burning some portion of that wealth.
We assume that our signallers have a utility function u(.)

that is increasing but concave in wealth, as in figure 1.

(Within the economic framework, this utility is conceptualized

as von Neumann–Morgenstern utility.)

Our base discrete action–response game is illustrated in

figure 2. The signaller may be in one of two conditions: high,

with a high wealth wH, or low, with a low wealth wL. The

signaller chooses whether or not to send a costly signal by squan-

dering a pre-set amount of money c on a costly signal with no

value beyond its communicative role (imagine burning money

or buying cut flowers). The receiver then decides whether to

accept or to reject the signaller. Receivers do best to accept high

signallers and reject low signallers. Signallers of both types do

best to be accepted. Specifically, if accepted, either type of signal-

ler receives a benefit of b (in units of utility, not of wealth). We can

thus obtain the signaller’s pay-offs for each outcome directly

from the signaller’s utility function. A signalling equilibrium

exists when the signal cost c satisfies the following condition:

wL � u�1½uðwLÞ � b� , c , wH � u�1½uðwHÞ � b�:

At the signalling equilibrium, high signallers will send a signal

and low signallers will not. Receivers will accept those who

signal and reject those who do not. As figure 1 illustrates, the

minimum signal cost that allows honest signalling in this game

is thus

cmin ¼ wL � u�1½uðwLÞ � b�:

This baseline model demonstrates that when signallers are

risk averse (or equivalently, when the utility of money is con-

cave), it is possible to signal wealth by an ‘ideal handicap’

[18], directly burning some fraction of one’s endowment.
3.2. Stochastic signalling
To model stochastic signal cost, we alter the game described

above by letting the cost for a particular signal be drawn from

some probability distribution rather than being a fixed cost.

Thus, instead of burning an amount of money c, a signaller

now takes a risk where the amount of money lost, Z, is a

random variable. In this case, we can obtain the signaller’s

expected pay-offs from the utility function. Now a signalling

equilibrium will exist when the lottery Z that describes the

stochastic signal cost satisfies

EðuðwL þ ZÞÞ þ b , uðwLÞ

and

EðuðwH þ ZÞÞ þ b . uðwHÞ:

A lottery z that minimally allows honest signalling in this

game thus satisfies

EðuðwL þ ZÞÞ þ b ¼ uðwLÞ:

Example 3.1.

Suppose the signaller has a logarithmic utility function of the

form u(x)¼ log2(xþ 1). Also suppose that the lottery Z that

describes the cost in the stochastic game takes value 2c2 with

probability p and value 0 with probability 1 2 p, where 0 ,

p , 1 and c2 . 0. For this example, we will let p¼ 1/4. Suppose

that the low-quality signallers have wealth level wL¼ 1, and the

high-quality signallers have wealth level wH¼ 2. Finally, sup-

pose that the benefit to a signaller of being accepted is b¼ 1 util.
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Figure 2. An action – response game with costly signals and partial conflict of interest. The game begins at the central node (open circle). The first move is a move
by ‘nature’ to determine the type of the signaller; this type is revealed to the signaller but not the receiver. In the second move, the signaller conditions its
behaviour on its type and chooses whether or not to send a signal. As the third move, the receiver must choose between two actions. The receiver can condition
on the signal, but not the type; this uncertainty is represented by the dotted lines. Only the pay-offs to the signaller are shown at the terminal nodes. Pay-offs to
the receiver are 1 if accepting a high individual or rejecting a low individual, and 0 otherwise.
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In the deterministic game, the minimal cost c1 needed to

make the low-quality signallers have no incentive to signal is

given by u(wL2 c1) þ b ¼ u(wL) and thus,

c1 ¼ wL � u�1ðuðwLÞ � bÞ

¼ wL � ½2log2ðwLþ1Þ�b � 1�

¼ 1� ½2log2ð1þ1Þ�1 � 1�
¼ 1:

This signal cost gives high-quality signallers a pay-off of

uðwH � c1Þ þ b ¼ log2ðwH � c1 þ 1Þ þ b
¼ log2ð2� 1þ 1Þ þ 1

¼ 2:

In the stochastic game, the minimal value c2 needed to ensure

that the low-quality signallers have no expected gain from signal-

ling is given by

EðuðwLþZÞÞþb¼uðwLÞ
puðwL�c2Þþð1�pÞuðwLÞþb¼uðwLÞ;

uðwL�c2Þ¼uðwLÞ�
1

p
b

c2¼wL�u�1 uðwLÞ�
1

p
b

� �

c2¼wL�½2log2ðwLþ1Þ�ð1=pÞb�1�

c2¼1�½2log2ð1þ1Þ�4�1�

and c2¼
15

8
:

Thus, the expected loss of wealth is (1/4)(15/8) ¼ 15/32, which

is substantially less than the loss of 1 unit of wealth owing to sig-

nalling in the deterministic game. This cost gives high-quality

signallers an expected pay-off of

EðuðwHþZÞÞþb¼puðwH�c2Þþð1�pÞuðwHÞþb
¼p log2ðwH�c2þ1Þþð1�pÞlog2ðwHþ1Þþb

¼1

4
log2 2�15

8
þ1

� �
þ 1�1

4

� �
log2ð2þ1Þþ1

�2:2312;
which is greater than the pay-off of 2 to a high-quality signaller in

the deterministic game. So in this example, stochasticity

decreases the average cost of signalling both in wealth and

in utility.

We want to understand the differences between the sto-

chastic and deterministic signalling games in general, and

discover whether the outcome of the example above is typi-

cal. First, we can say that signallers will lose less money on

average in the stochastic game than in the deterministic

game. This is because signallers will not have to spend as

much wealth on average in the stochastic game. Because sig-

nallers are risk averse, their expected utility from a fixed

wealth is higher than their expected utility from a lottery

with the same expected value. Therefore, in order to maintain

the same average utility level (the level at which it is worth-

while to signal) in the stochastic game as in the deterministic

game, the expected wealth loss must be less. Next, we want to

know whether signallers will be better off playing the sto-

chastic game or the deterministic game. This amounts to

asking in which game will there be less loss in expected

utility owing to the costs of signalling.
3.3. Stochasticity decreases average signal cost
Before stating our results for the discrete case, we describe the

basic economic concepts of certainty equivalents and the coeffi-
cient of absolute risk aversion. For any utility function u, the

certainty equivalent of some lottery X is the certain wealth

level that has the same utility as the expected utility of the lot-

tery X. We will write this as C(X ). An example is shown in

figure 3. Because u is concave, that is the second derivative

is negative, the certainty equivalent C(X ) is less than E(X ),

the expected value of X. It turns out that the certainty equiv-

alent depends on the coefficient of absolute risk aversion,

which is given by AðxÞ ¼ �u00ðxÞ/u0ðxÞ.

Proposition 3.2. A successful signaller in the stochastic game will
have higher expected utility than a successful signaller in the
deterministic game if and only if the players have DARA.
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Figure 3. The certainty equivalent C(X ) of a lottery X is the certain wealth
amount such that its utility is equal to the expected utility of the lottery X.
Illustrated here is the certainty equivalent of the lottery X that pays a with
probability 1/2 and b with probability 1/2.
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Proof. First consider the deterministic game. Let c be the maxi-

mum amount of money that a low-quality signaller can

spend to obtain the reward without receiving a net loss in

utility. Thus, c is defined by the equation

uðwL � cÞ ¼ uðwLÞ � b: ð3:1Þ

Therefore, in order to be successful, a high-quality signaller

must pay a cost of c þ e1, for some arbitrarily small e1 . 0,

and will receive a utility of

uðwH � c� e1Þ þ b:

Now consider the stochastic game. Let Z be any random

variable with a distribution described by some non-degenerate

lottery (i.e. Z takes more than one possible value) such that

EðuðwL þ ZÞÞ ¼ uðwLÞ � b: ð3:2Þ

So if a low-quality signaller risks money in the lottery Z in

order to gain the reward, his expected utility will not increase.

Therefore, a high-quality signaller can be successful by risking

money in the lottery with outcome Z 2 e2, for some arbitrarily

small e2 . 0, and will receive an expected utility of

EðuðwH þ Z� e2ÞÞ þ b:

Thus, a successful signaller in the stochastic game will

have higher expected utility than a successful signaller in the

deterministic game when

EðuðwH þ Z� e2ÞÞ þ b . uðwH � c� e1Þ þ b:

As the epsilons are arbitrarily small, we may move them out-

side the utility functions and cancel them out along with the

b on both sides to get

EðuðwH þ ZÞÞ . uðwH � cÞ: ð3:3Þ

We now show that this condition holds when the players

have DARA. Define utility function uþ by

uþðxÞ ¼ uðxþ wH � wLÞ:

Rewriting inequality (3.3) using uþ, we have

EðuþðwL þ ZÞÞ . uþðwL � cÞ:

As uþ is increasing, so is u�1
þ and we can write

u�1
þ ðEðuþðwL þ ZÞÞÞ . wL � c
and

u�1
þ ðEðuþðwL þ ZÞÞÞ . u�1ðuðwL � cÞÞ:

Equation (3.1) allows us to rewrite the right-hand side

u�1
þ ðEðuþðwL þ ZÞÞÞ . u�1ðuðwLÞ � bÞ

and from equation (3.2), this gives us

u�1
þ ðEðuþðwL þ ZÞÞÞ . u�1ðEðuðwL þ ZÞÞÞ:

This last line says that the certainty equivalent of the lottery

wL þ Z is greater for utility function uþ than for u. As the

choice of wL is arbitrary, this is equivalent to the statement

that u exhibits greater absolute risk aversion than uþ (for

example, Mas-Colell et al. [19]). As uþ(x) ¼ (x þ a) where a ¼
wH2 wL . 0, this means that u exhibits DARA. So a successful

signaller in the stochastic game will have higher expected uti-

lity than a successful signaller in the deterministic game

precisely when the players have DARA. B

The next proposition states what probability distribution

on the cost of signalling will maximize the utility and

wealth level of successful signallers in the stochastic game.

We suppose that the lottery Z that describes this cost has a

range that is restricted to some interval [a, b].

Proposition 3.3. If the signallers have DARA, the expected utility of
a successful signaller is maximized when the distribution for Z

assigns positive probability only to the endpoints a and b. This
also maximizes the expected wealth level of signallers with concave
utility (DARA or otherwise).

Proof. As a preliminary note, if h is a convex function and X is

some random variable with E(X ) fixed that takes values

within [a,b], then the distribution for X that maximizes

E(h(X )) assigns positive probability only to the endpoints a

and b. For suppose that to the contrary there is a distribution

for X with some probability mass not at the extreme points.

Suppose c is a point between a and b that has some positive

probability p . 0. Let e . 0 be a positive number with mag-

nitude less than the distance between a and c and the

distance between c and b. Then consider the distribution

where c has zero probability but c 2 e and c þ e each have

probability increased by p/2. Then E(X ) is not changed,

but since h is convex, 1
2 hðc� eÞ þ 1

2 hðcþ eÞ . hðcÞ. Thus,

E(h(X )) is increased and so our supposition that there exists

a distribution for X with some probability mass not at the

extreme points that maximizes E(h(X )) is contradicted.

As a high-quality signaller can be successful by risking

money in the lottery Z, a low-quality signaller must be just

barely unwilling to risk money in this lottery. This gives us

the constraint on Z

EðuðwL þ ZÞÞ ¼ uðwLÞ � b� e ð3:4Þ

for some arbitrarily small e . 0. In other words, the distribution

for Z is constrained by the fact that E(u(wL þ Z)) is constant.

The expected utility of a successful signaller is then

EðuðwH þ ZÞÞ þ b ¼ EðuþðwL þ ZÞÞ þ b;

where we define uþ(x)¼ u(x þ wH2 wL) as in the proof of

proposition 3.2.

As u is increasing, so is uþ, and this implies that there exists

an increasing function g such that u(x)¼ g(uþ(x)) for all x. If u
exhibits DARA, than uþ has lower absolute risk aversion than
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u and this means that g is concave. (See again [19].) Therefore,

there exists a convex function h ¼ g –1 such that uþ(x) ¼ h(u(x))

for all x. This gives us

EðuþðwL þ ZÞÞ ¼ EðhðuðwL þ ZÞÞÞ

and so we can find the distribution of u(wL þ Z) that maximizes

E(h(u(wL þ Z))). Now E(u(wL þ Z)) is constant, so because h is

convex, this distribution is the one that assigns positive prob-

ability only to the extreme points, which are u(wL þ a) and

u(wL þ b) (see note above). Therefore, the distribution for Z
that maximizes the expected utility of a successful signaller is

the one that assigns positive probability only to the endpoints

a and b.

As u21 is also convex regardless of whether u exhibits

DARA, as long as u is concave, an analogous argument shows

that the expected wealth level of a successful signaller is also

maximized when the distribution for Z assigns positive prob-

ability only to the endpoints a and b. B
30469
4. Continuous signalling
In our discrete model, there are only two types of signaller, two

options for signalling and two types of response. Alternatively,

we imagine a situation where there are signallers with many

different wealth levels, many possible signal intensities and

receivers may choose many different responses. The extreme

case is when wealth levels, signal intensities and responses

may come from any point along a continuum. This produces a

continuous signalling game—a class of model which has

been instrumental in the development of the theory of costly

signalling (for example, Grafen [20]). In Grafen’s biological

interpretation, each signaller has a ‘quality’ instead of a wealth

level. Receivers are typically thought of as potential mates.

Receivers must gauge a signaller’s quality based on the signal

intensity, and do best to respond more enthusiastically

the higher the signaller’s quality.

Following the notation of Bergstrom et al. [21], signallers

have a pay-off function p(q,s,r) that depends on their own

quality (q), the intensity of the signal they send (s) and the

level of response they receive from the receiver (r). This

pay-off function is conceived of as the difference of a benefit

function H(q,r) and a cost function C(q,s). The benefit depends

on the quality of the signaller and the response it receives,

and the cost depends on the quality of the signaller and the

intensity of the signal that it chooses to send. Each receiver

has a pay-off function G(q,r) that depends on how appropri-

ate the response (r) is given the signaller’s true quality (q).

Of course, the receiver knows only what signal intensity (s)

the signaller chose. A strategy for signallers is a function

s ¼ s(q) that specifies a choice of signal intensity for all signal-

ler qualities q. A strategy for a receiver is a function r ¼ r(s)

that specifies a choice of response for all signal intensi-

ties that the signaller might send. If the functions s(q) and

r(s) make up a signalling equilibrium, this means that the

function s is one-to-one and that neither player can benefit

by unilaterally modifying its strategy function.

Bergstrom et al. [21] give a method of finding the func-

tions s(q) and r(s) that make up a signalling equilibrium

for any particular game of the above form. Building upon

this method, we prove that when signallers have DARA,

stochasticity decreases average signal cost in continuous

signalling games as well as in discrete games.
As we did for the discrete case, we will describe two signal-

ling games, one deterministic and one stochastic, and compare

the average pay-offs at equilibrium. For both games, we

assume that benefit is proportional to response level and that

signal intensity is proportional to signal cost. The receiver’s

pay-off G(q,r), for how appropriate the response is given the

signaller’s true quality, is also the same for both games. We

will call the signal intensity functions for the deterministic

and stochastic games SB and SG, respectively (for Burning

money or Gambling money). So for the deterministic game,

a signal of intensity SB will cost SB units of wealth. For the

stochastic game, a signal of intensity SG will cost SG units

of wealth with probability p and 0 units of wealth with

probability 1 2 p, where 0 , p , 1.

For the deterministic regime, the pay-off to a successful

signaller with wealth level wH in the discrete game was

bþ uðwH � cÞ;

where c is the signal cost and b is the benefit of being accepted

by the receiver. In the continuous case, cost is proportional to

signal intensity and the benefit is proportional to response

level. This gives us

pB ¼ rþ uðq� SBÞ ð4:1Þ

as the pay-off function for signallers in the continuous game

with deterministic costs.

In the stochastic regime, the pay-off to a successful

signaller with wealth level wH in the discrete game was

b þ u(wH þ Z ) giving an expected pay-off of

bþ EðuðwH þ ZÞÞ:

Exchanging r for b and q for wH gives us the expected pay-off

for a signaller in the continuous case

pG ¼ rþ Eðuðqþ ZÞÞ:

The lottery Z takes value 2SG with probability p and value 0

with probability 1 2 p. Therefore, we can write

pG ¼ rþ puðq� SGÞ þ ð1� pÞuðqÞ: ð4:2Þ

Having defined the strategy space and pay-off functions

for both games, the problem now is to find a general solution

for the equilibrium response functions of the signal intensities

and signal intensity functions of quality. We give the proof of

the following proposition in Appendix A.

Proposition 4.1. If the players have DARA, then at equilibrium
they will have higher expected utility in the stochastic signalling
game than in the deterministic signalling game.
5. Discussion
Signalling models in both biology and economics have typi-

cally assumed determinate costs. In the real world, signal

costs will often if not always be stochastic. This difference mat-

ters. Here, we show that when signallers have realistic risk

preferences, stochastic signal costs result in signals that are

cheaper, on average, than when signals have determinate

costs. This comparative result holds in discrete and continuous

models alike.

In biology, signal costs may be stochastic for a variety of

reasons. Begging calls are probably costly because of stochas-

tic predation risk instead of determinate energy expenditures

[22–25]. Physical ornamentation such as long tails or
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colourful plumage in birds may similarly be costly owing to

predation risk [26]. Extravagant territorial and courtship dis-

plays can be risky as well: instead of storing resources for lean

times, an individual invests time and energy in prolonged

displays [27].

Many if not most biological instances of stochastic signal

costs will be more complicated in form than the simple lot-

teries modelled here. The important point is that our

analysis shows that to simply treat stochastic costs as equiv-

alent to their expectation will often lead to a distorted

picture of the true costs. And our results suggest that variable

signal costs, rather than undermining honesty in costly sig-

nalling, in fact bolster it.

Empirical studies could provide evidence for the action of

gambles to decrease average signal costs. The greater the var-

iance in the stochastic cost of a signal, the more likely it is that

the signal cost is being reduced by the stochasticity (see prop-

osition 3.3). This suggests the need for empirical studies to

take into account risk structure when measuring signal

costs. If the risk structure has high variance, then high

average cost is not as important for honest signalling.

In the last couple decades, researchers have described a

number of systems in which honest communication is less

costly than in traditional handicap theory. Such efforts are

essential if we are to explain the large number of different

contexts in which communication is found to be stable. The

effects of stochasticity for decreasing signal costs is another

fundamental mechanism that deserves attention because of

the wide variety of circumstances in which it likely acts.

Funding statement. This work was supported by NSF grant no. EF-
1038590 to C.T.B.
Appendix A. Proof of proposition 4.1
We first use the method from Bergstrom et al. [21] to obtain

differential equations for the signalling strategy under burn-

ing money, SB(q), and under gambling money, SG(q). For

burning money, the signaller’s pay-off function is

pB ¼ rþ uðq� SBÞ:

We can break this function into the difference of a benefit

function H(q,r) that depends on the signaller’s quality q
and the receiver’s response level r, and a cost function

CB(q,SB) that depends on q and the signal intensity, SB.

Indeed, if

H ¼ rþ uðqÞ
and CB ¼ uðqÞ � uðq� SBÞ;

)
ðA 1Þ

then pB ¼ H 2 CB.

Similarly, for gambling money, we have

pG ¼ rþ puðq� SGÞ þ ð1� pÞuðqÞ;

which is broken down into pG ¼ H 2 CG as follows:

H ¼ rþ uðqÞ; same as before,

and CG ¼ pðuðqÞ � uðq� SGÞÞ:

)
ðA 2Þ

Following Bergstrom et al. [21], we obtain the differential

equation

dS
dq
¼ ð@H/@rÞðdR�/dqÞ

@C/@S
;

which provides the slope of the signalling strategy S(q) in

terms of the benefit function H, the cost function C (which

depends on S(q) itself ) and the equilibrium response

level R*(q).

From expressions (A 1) and (A 2), we see that @H/@r ¼ 1.

And if we denote by r0(q) the derivative dR*/dq, then for

burning money,

dSB

dq
¼ ð@H/@rÞðdR�/dqÞ

@CB/@SB

¼ dR�/dq
@CB/@SB

¼ r0ðqÞ
u0ðq� SBÞ

:

ðA 3Þ

And for gambling money,

dSG

dq
¼ dR�/dq
@CG/@SG

¼ r0ðqÞ
pu0ðq� SGÞ

:

ðA 4Þ

As the benefit function H is the same for both games,

and at the separating equilibrium the receiver’s response

r will be the same for both games, signallers in the stochas-

tic game will do better than signallers in the deterministic

game when CG , CB. Therefore, we want to show that

when u exhibits DARA, CG , CB. To do so, we first

show that CG , CB is equivalent to inequality (A 7)

below, and then show that inequality (A 7) follows when

u exhibits DARA.

From equations (A 1) and (A 2), CG , CB gives us

pðuðqÞ � uðq� SGÞÞ , uðqÞ � uðq� SBÞ;

i.e.

uðq� SBÞ , puðq� SGÞ þ ð1� pÞuðqÞ: ðA 5Þ

Rewriting to isolate SG, we have

1

p
uðq� SBÞ þ 1� 1

p

� �
uðqÞ , uðq� SGÞ:

As u is increasing, so is u21. Thus, CG , CB when

SG , q� u�1 1

p
uðq� SBÞ þ 1� 1

p

� �
uðqÞ

� �
:

Define

S�G ¼ q� u�1 1

p
uðq� SBÞ þ 1� 1

p

� �
uðqÞ

� �
ðA 6Þ

so that CG , CB if SG , S�G.

Note that S�G is a function of q and consider the value of

the differential equation (A 4), i.e.

dSG

dq
¼ r0ðqÞ

pu0ðq� SGÞ

along the curve S�GðqÞ. Note that if dSG/dq
jSG¼S�

G
, dS�G/dq for q . 0 then SG , S�G for q . 0 because

SGð0Þ ¼ 0 ¼ S�Gð0Þ. So CG , CB when dSG/dqjSG¼S�
G

,

dS�G/dq, that is when r0ðqÞ/pu0ðq� S�GÞ , dS�G/dq.

Substituting for S�G

r0ðqÞ
pu0ðq� ½q� u�1ðð1/pÞuðq� SBÞ þ ð1� 1/pÞuðqÞÞ�Þ

,
d

dq
½q� u�1ðð1/pÞuðq� SBÞ þ ð1� 1/pÞuðqÞÞ�



w

y

L

M

Nd

q−SB q

y=u(w)

1 – 1)d(p

u–1(u(q) – 1d)p

Figure 4. Inequality (A 7) says that the derivative of u at point M is less than
the weighted average of the derivatives at L and N. Note that the weighted
average of y ¼ u(q) and y ¼ uðqÞ � ð1/pÞd is pðuðqÞ � ð1/pÞdÞþ
ð1� pÞuðqÞ ¼ uðq� SBÞ.
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Simplifying the left-hand side and evaluating the derivative on

the right-hand side,

r0ðqÞ
pu0ðu�1ðð1/pÞuðq� SBÞ þ ð1� 1/pÞuðqÞÞÞ

, 1� ðu�1Þ0ðð1/pÞuðq� SBÞ þ ð1� 1/pÞuðqÞÞ

� 1

p

� �
u0ðq� SBÞ 1� dSB

dq

� �
þ 1� 1

p

� �
u0ðqÞ

� �

Applying the inverse rule for derivatives, we get

r0ðqÞ
pu0ðu�1ðð1/pÞuðq� SBÞ þ ð1� 1/pÞuðqÞÞÞ

, 1� 1

u0ðu�1ðð1/pÞuðq� SBÞ þ ð1� 1/pÞuðqÞÞÞ

� 1

p

� �
u0ðq� SBÞ 1� dSB

dq

� �
þ 1� 1

p

� �
u0ðqÞ

� �
:

Multiplying by the (positive) denominator of the left-hand side

yields

r0ðqÞ , pu0 u�1 1

p
uðq� SBÞ þ 1� 1

p

� �
uðqÞ

� �� �

� u0ðq� SBÞ 1� dSB

dq

� �
� ð1� pÞu0ðqÞ

� �
:

Rearranging and substituting expression (A 3) gives

r0ðqÞ , pu0 u�1 1

p
uðq� SBÞ þ 1� 1

p

� �
uðqÞ

� �� �
þ ð1� pÞu0ðqÞ

� u0ðq� SBÞ 1� r0ðqÞ
u0ðq� SBÞ

� �
:

And after a bit of algebra, we obtain

u0ðq� SBÞ , pu0 u�1 uðqÞ � 1

p
ðuðqÞ � uðq� SBÞÞ

� �� �

þ ð1� pÞu0ðqÞ:

If we let d ¼ u(q) 2 u(q 2 SB) be the distance between u(q) and

u(q 2 SB), the above inequality becomes

u0ðq� SBÞ , pu0 u�1 uðqÞ � 1

p
d

� �� �
þ ð1� pÞu0ðqÞ: ðA 7Þ

This inequality has a nice geometric interpretation, illustrated in

figure 4. It says that the derivative of u at point M is less than the

weighted average of the derivative at points L and N.

We now show that inequality (A 7) follows when u exhi-

bits DARA. We first point out that the statement that u
exhibits DARA is equivalent to the statement that the rate

of decrease of u0(w), with respect to y, is decreasing. Thus,

in figure 4, u0 decreases proportionately more from L to M
than from M to N. Thus, u0 at N is not small enough to bal-

ance out the value of u0 at L, and so the weighted average

is greater than the single value u0(q 2 SB).

Indeed, if u exhibits DARA, then by definition 2u00(w)/u0(w)

is decreasing in w. As u21 is increasing, this implies that

2u00(u21(y))/u0(u21(y)) is decreasing in y. Thus,

�u00ðu�1ðyÞÞ
u0ðu�1ðyÞÞ ¼ �u00ðu�1ðyÞÞðu�1Þ0ðyÞ

¼ d

dy
½�u0ðu�1ðyÞÞ�

is decreasing as well (the above equalities follow from the inverse

rule of derivatives and the chain rule, respectively). So the rate of

decrease of u0(w), with respect to y, is decreasing.
This means that, in figure 4, the difference between u0 at L
and u0 at M is more than (1/p 2 1) times the difference

between u0 at M and u0 at N. Let’s call these differences D1

and D2, respectively, so we have D1.(1/p 2 1)D2. Therefore,

by the definitions of D1 and D2,

u0 u�1 uðqÞ � 1

p
d

� �� �
� u0ðq� SBÞ

.
1

p
� 1

� �
ðu0ðq� SBÞ � u0ðqÞÞ:

Rearranging, we get

pu0 u�1 uðqÞ � 1

p
d

� �� �
þ ð1� pÞu0ðqÞ . u0ðq� SBÞ;

which is inequality (A 7). So DARA gives us inequality

(A 7), which is equivalent to CG , CB, and we have proved

the result.
A.1. Equilibrium stability
We next apply the second part of Bergstrom et al.’s result to

show that the equilibrium strategies SB(q) and SG(q) we

found above are stable (i.e. the extrema are maxima rather

than minima). Their result states that the equilibrium is

stable when the following second-order condition holds

everywhere along the solution curve.

d

dq
d

dp
Hðq;R�ð pÞÞ .

@2

@s@q Cðq; sÞ d
dq Hðq;R�ð pÞÞ

@
@s Cðq; sÞ

: ðA 8Þ

We have H(q,r) ¼ r þ u(q). So

Hðq;R�ð pÞÞ ¼ R�ð pÞ þ uðqÞ:

Thus,

d

dp
Hðq;R�ð pÞÞ ¼ d

dp
R�ð pÞ

and so

d

dq
d

dp
Hðq;R�ð pÞÞ ¼ 0:
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Also,

d

dq
Hðq;R�ð pÞÞ ¼ u0ðqÞ:

For the cost function, we have C(q,s) ¼ u(q) 2 u(q 2 s) for

burning money and C(q,s) ¼ p(u(q) 2 u(q 2 s)) for gambling

money. For burning money, this gives us

@

@s
Cðq; sÞ ¼ u0ðq� sÞ

and

@2

@s@q
Cðq; sÞ ¼ u00ðq� sÞ:
For gambling money, we have

@2

@s@q
Cðq; sÞ ¼ pu00ðq� sÞ:

For both cases, inequality (A 8) then reduces to

0 .
du00ðq� sÞu0ðqÞ

u0ðq� sÞ ;

where d is either 1 or p. As u is increasing, u0 is positive, so the

above inequality holds when u00(q 2 s) is negative, that is

when utility is concave. Thus, the second-order condition

holds because we are only considering individuals with

concave utility.
terface
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