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A simple mathematical model of bacterial transmission within a
hospital was used to study the effects of measures to control
nosocomial transmission of bacteria and reduce antimicrobial re-
sistance in nosocomial pathogens. The model predicts that: (i) Use
of an antibiotic for which resistance is not yet present in a hospital
will be positively associated at the individual level (odds ratio) with
carriage of bacteria resistant to other antibiotics, but negatively
associated at the population level (prevalence). Thus inferences
from individual risk factors can yield misleading conclusions about
the effect of antibiotic use on resistance to another antibiotic. (ii)
Nonspecific interventions that reduce transmission of all bacteria
within a hospital will disproportionately reduce the prevalence of
colonization with resistant bacteria. (iii) Changes in the prevalence
of resistance after a successful intervention will occur on a time
scale of weeks to months, considerably faster than in community-
acquired infections. Moreover, resistance can decline rapidly in a
hospital even if it does not carry a fitness cost. The predictions of
the model are compared with those of other models and published
data. The implications for resistance control and study design are
discussed, along with the limitations and assumptions of the
model.

Antimicrobial resistance is a growing problem in many bacterial
pathogens and is of particular concern for hospital-acquired

(nosocomial) infections (1, 2). Frequently, the bacteria responsible
for nosocomial infections are members of the normal, usually
commensal bacterial flora that become pathogenic when they
multiply in normally sterile sites, such as the lower respiratory tract
or the blood. Thus, hospital-acquired infections often involve
transmission from patients who carry the bacteria asymptomatically
(or symptomatically) to other patients, some of whom then may
become infected with the colonizing strain (3).

A number of interventions have been proposed and tried to
limit nosocomial infections and particularly to stem the spread
of antibiotic-resistant bacteria. Some of these measures, such
as hand washing and barrier precautions, are designed to
reduce overall transmission of bacteria within the hospital
(4, 5). In some cases, hospitals have increased the prophylactic
use of drugs other than those for which resistance is currently
a problem, to prevent or terminate colonization with the
resistant bacteria (6, 7). Another strategy has been ‘‘cycling’’
of formularies in a hospital or ward, whereby one class of
antibiotics is used, where possible, for primary treatment of
infections for a period of time, and then, as resistance to this
class climbs, the policy switches to emphasize use of a second
class of antibiotics, for which resistance is rare or absent
(8–11). At the extreme, the use of all antibiotics has been
curtailed in an effort to control the ascent of resistance to
particular antibiotics (12, 13).

Although it generally is assumed that use of a particular
antibiotic will be positively related to the level of resistance to
that drug, most of these interventions have been conducted
without quantitative expectations for the magnitude or time
scale of their effects, and often without predetermined criteria
for how to measure their success. Consequently, it is difficult
to judge whether an intervention has been successful, compare

the relative merits of different interventions, or identify the
reasons particular interventions have succeeded while others
have failed.

Mathematical models can provide such quantitative predic-
tions, which naturally give rise to criteria for evaluating the
interventions (9, 14–17). This report describes the structure and
analysis of a simple mathematical model of hospital-transmitted
bacterial pathogens. The analysis has two objectives: to make
testable predictions about the transmission dynamics of resistant
and sensitive nosocomial pathogens and to suggest and justify
criteria for measuring the success of interventions to reduce
resistance in hospitals. Toward these ends, we have not at-
tempted to ‘‘fit’’ the model to the observations from a particular
organism or hospital; rather, we describe the generic properties
of a model intended for a range of hospital-acquired infections.
In our numerical analysis of this model, we use parameter values
derived from published studies to predict how the prevalence of
resistant bacteria will change over time after various interven-
tions. We conclude with a consideration of how well our model
accounts for existing observations about the spread and control
of drug-resistant bacteria and with suggestions about how the
validity of this model can be tested.

Mathematical Model
The model is designed to describe the transmission dynamics of
any one of several species of bacteria that commonly reside in or
on the skin, respiratory passages, or digestive tracts of humans:
e.g., Staphylococcus spp., Enterococcus spp., Escherichia coli,
Klebsiella pneumoniae, and Enterobacter. Although generally
commensal, these and other members of the normal human flora
also can be responsible for symptomatic and even lethal infec-
tions. These bacteria are transmitted between patients in hos-
pitals via direct contact between patients, through contamina-
tion of the institutional environment, or with the inadvertent
help of human vectors (e.g., healthcare workers, HCWs) (18–
20). The bacteria are continually confronted with antibiotics
being used for prophylaxis or treatment (21, 22). As well as
posing a risk of opportunistic infection, these species serve as a
reservoir of antibiotic-resistance plasmids that are horizontally
transmitted between strains and species of bacteria and are
responsible for much of the multiple drug resistance in patho-
genic bacteria (23–25).

The model shown in Fig. 1A considers the transmission
dynamics of a single bacterial species and the use of two
antimicrobial agents, called drug 1 and drug 2. Hereafter, the
term bacteria refers to the single bacterial species under con-
sideration. The structure of the model is similar to that of
previous compartmental models (9, 16, 17, 26–31). The major
difference from most of its predecessors (except ref. 15) is that

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: VRE, vancomycin-resistant enterococcus; HCW, healthcare worker.

‡To whom reprint requests should be addressed: E-mail: Lipsitch@epinet.harvard.edu.

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.

1938–1943 u PNAS u February 15, 2000 u vol. 97 u no. 4



in this model, a fraction (or possibly all) of the individuals that
enter the institution already are colonized with the bacterial
species of interest. This distinction has an important effect on the
dynamics of nosocomial antibiotic resistance.

Individuals may carry strains of these bacteria that are either
sensitive (S) or resistant (R) to drug 1, or they may be free of
these bacteria (X); here, X, S, and R, are the frequencies of the
different host states as well as their designations. We assume that
resistance to drug 2 is not present in the bacteria. Individuals
enter the hospital either carrying sensitive bacteria, S, (a fraction
m) or uncolonized with these species, X (a fraction 1-m); for
some species, such as E. coli, m will be 1 or nearly 1, whereas for
other species it will be less. Because antibiotics are used in
hospitals to prevent or treat a wide range of conditions, we
assume that patients will receive antibiotics at a rate independent
of whether or not they are colonized by the bacterial species
under consideration. Treatment with drug 1, which occurs at rate
t1 per day, clears carriage of sensitive bacteria, converting
members of the S population into X, but has no effect on hosts
bearing resistant bacteria. Treatment with drug 2, which occurs
at rate t2 per day, clears carriage of either sensitive or resistant
bacteria. Spontaneous clearance of sensitive and resistant bac-
teria occurs at a rate g per day. Individuals who are not carrying
the sampled species (X) are colonized with sensitive bacteria at
a rate proportional to the prevalence of hosts carrying sensitive
bacteria and a rate constant b. Colonization with resistant
bacteria occurs with rate constant b(1-c), where c denotes the
fitness ‘‘cost’’ of resistance to drug 1. The average duration of

stay in the institution is 1ym days, and the total population of the
hospital is kept steady by an admission rate of m per day. The
system is described by the following set of ordinary differential
equations:

Ṡ 5 mm 1 bSX 2 ~t1 1 t2 1 g 1 m!S

Ṙ 5 b~1 2 c!RX 2 ~m 1 t2 1 g!R

Ẋ 5 ~1 2 m!m 1 ~t1 1 t2 1 g!S 1 ~t2 1 g!R

2 bSX 2 b~1 2 c!RX 2 mX,

where a dot denotes differentiation with respect to time.
Fig. 1B shows an expanded form of this same model, which

tracks individuals by their histories of drug 2 treatment. Here,
each compartment (S, X, and R) from the simple model is broken
into two compartments based on treatment history: those who
have not received drug 2 (SU, XU, and RU) and those who have
(ST, XT, and RT). The transmission dynamics are identical to
those in the simple model, but by keeping track of individual
treatment histories, we can now use this compartment model to
evaluate the effect of treatment with drug 2 on the odds that
individual patients will carry flora resistant to drug 1.

Results
Equilibria. Patients colonized with sensitive bacteria are always
present in this model, because they are constantly entering the
hospital, and patients not colonized with the bacteria are also
present, because of clearance of colonized individuals and, if
m,1, the entry of already uncolonized individuals. Carriage of
resistant bacteria will persist in the hospital under the condition:

t1 1 t2 1 b 1 g 1 m 2 Î~t1 1 t2 2 b 1 g 1 m!2 1 4bmm

2
2~t1 1 g 1 m!

1 2 c
. 0. [1]

For the special case in which resistant and sensitive bacteria are
equally transmissible (c 5 0), this condition simplifies to:

R0 . t1y(t1 2 mm),

where R0 5 by(t2 1 m 1 g) is the basic reproductive rate of
resistant bacteria in a hypothetical institution where all hosts
entered uncolonized (X). Qualitatively, these conditions mean
that endemic persistence of a population of bacteria resistant to
drug 1 depends on having sufficiently high rates of: within-
hospital bacterial transmission (b) and use of drug 1 (t1), and
sufficiently low: fitness cost of resistance (c), rates of entry of
individuals carrying sensitive bacteria (m), turnover of the
hospital population (m), use of drug 2 (t2), and spontaneous
clearance of colonization (g).

The equilibrium prevalence of colonization with bacteria
resistant to drug 1 also depends on these parameters, in the
same direction. Thus, for example, the model predicts that any
procedure that reduces the rate (b) of between-host transmis-
sion of bacteria in the hospital, such as improved hygiene and
barrier precautions, would reduce the prevalence of resistant
infections, as illustrated in Fig. 2A. Although this result is
unsurprising, the more interesting prediction is that as long as
transmission is sufficient to maintain endemic persistence of
resistant bacteria in the hospital, reducing transmission will
only reduce resistant bacteria, and will have no effect on the
prevalence of sensitive bacteria. This prediction is counterin-
tuitive because reductions in transmission do not distinguish
between bacterial types, but it can be understood as a conse-
quence of the fact that resistant bacteria depend solely on
within-hospital transmission, whereas sensitive bacteria main-

A

B

Fig. 1. (A) A compartment model of antibiotic-resistance in a hospital
setting. See text for description and equations. (B) The extended model, in
which patients are tracked by their treatment history (see text). Individuals are
discharged at a constant rate m from all compartments (not shown). For
brevity, S 5 ST 1 SU; X 5 XT 1 XU; r 5 RT 1RU.
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tain their prevalence by both ‘‘immigration’’ and transmission.
Mathematically, the result simply states that the transmission
rate does not appear in the expression for the equilibrium
value of S, given in the legend of Fig. 2.

Not surprisingly, the model also predicts that the prevalence
of resistance to drug 1 would be directly related to the level of
use of drug 1 (Fig. 2B). More surprising, on at least first
consideration, is the prediction that increasing the use of drug 2,
for which there is no resistance, would result in a reduction in the
equilibrium prevalence of bacteria resistant to drug 1 (Fig. 2C).
Stated another way, in the hospital at large, there should be a
negative relationship between the use of drug 2 and the preva-
lence of resistance to drug 1.

Interestingly, at the level of individual patients, the anticipated
relationship between treatment with drug 2 and resistance to
drug 1 is precisely the opposite. Patients treated with drug 2 are
more likely to carry bacteria resistant to drug 1 than those who

have not been treated. Epidemiologists often present this indi-
vidual association as a prevalence odds ratio (32):

OR 5

Odds (Carrying resistant bacteriau
prior treatment with drug 2)

Odds (Carrying resistant bacteriauno
prior treatment with drug 2)

5
RT

ST 1 XTY RU

SU 1 XU .

If this ratio is greater than 1, an individual who has been treated
with drug 2 is more likely to carry bacteria resistant to drug 1
than someone who has not received drug 2. In the model of Fig.
1B, it can be proven that this odds ratio is always greater than 1;
although this is algebraically messy in general, it can be seen
more easily for the special case when c 5 0; in this case, the odds
ratio at equilibrium is given by:

OReq 5 1 1
bmt1~t2 1 m!@t1 1 t2 1 g 1 m~1 2 m!#

~t2 1 g 1 m!@t1 1 g 1 ~t2 1 m!~1 2 m!#
@bmm 1 t1~t1 1 t2 1 g 1 m!#

,

which is clearly greater than 1, because all terms of the fraction
are positive. Thus, the model makes the counterintuitive pre-
diction that use of drug 2 reduces the prevalence of resistance to
drug 1 in the institution, while at the same time treatment with
this second antibiotic increases any individual’s odds of carrying
resistant bacteria. This result is illustrated in Fig. 2D.

This result, too, is explained by the fact that many individuals
enter the institution carrying sensitive bacteria. Treatment clears
these sensitive bacteria, making it possible for them to be
colonized by the resistant strain, which is endemic in the hospital.
Therefore, individuals treated with drug 2 are at greater risk of
acquiring the resistant strain than individuals who are not.
However, in the hospital at large, treatment with drug 2 reduces
the duration of carriage of bacteria resistant (or sensitive) to
drug 1, thereby reducing the endemic prevalence of the resistant
bacteria. In this sense, use of drug 2 has the same effect as
infection control or any other measures that reduce the trans-
mission of bacteria in the hospital.

These equilibrium results indicate how (in which direction)
changes in transmission conditions and drug use within a hos-
pital should affect levels of resistance. However, they do not
provide information on how fast such effects will occur. Next we
consider the dynamics of the model after an intervention.

Dynamics: Response of Hospital Populations to Interventions. To
estimate the rate at which hospital populations respond to
interventions, it is necessary to use realistic values for key
parameters of the model. Fortunately, the literature contains
sufficient information to obtain realistic values of the most
important of these parameters; see Table 1. In what follows, we
describe the results of numerical solutions of the model by using
parameters from the ranges in Table 1.

Fig. 3A illustrates the dynamics of colonization with sensitive
and resistant bacteria after various interventions. The black
curve shows the effects of reducing transmission (b) within a
hospital by 30%, using nonspecific measures such as barrier
precautions or hand washing. The green curves show the effects
of discontinuing drug 1 use (solid) or of reducing it by half
(dashed lines), using realistic parameter values. The blue curves
show the effects of the same intervention, supplemented by an
equivalent increase in use of drug 2. In each case, the response
of the bacterial populations is rapid, taking place over a period
of a few weeks to a few months.

This relatively rapid response to these interventions can be

A B

CC D

Fig. 2. Equilibrium prevalence of sensitive and resistant bacterial carriage
predicted by the model, as a function of treatment and transmission
variables. Equilibrium prevalences are given by:

Ŝ 5
mm~1 2 c!

t1 2 c~t1 1 t2 1 g 1 m!
, X̂ 5

t2 1 g 1 m

b~1 2 c!
, R̂ 5 1 2 Ŝ 2 X̂.

Sensitives are shown in blue; resistants in red; and uncolonized individuals
in green. (A) Increased within-hospital transmission rates (b) increase the
prevalence of sensitive bacteria, up to the threshold (given by Eq. 1) at
which resistant bacteria are able to invade and persist endemically. Further
increases in transmission rates increase the prevalence of resistant bacterial
carriage but have no effect on the prevalence of carriage of sensitive
bacteria. Thus, interventions to reduce transmission, such as barrier pre-
cautions and hand washing, are most likely to reduce carriage of resistant
bacteria before they reduce carriage of sensitive, if they affect sensitive
carriage at all. (B) Increased levels of treatment with drug 1 (t1) result in
higher prevalence of bacteria resistant to it and lower prevalence of
sensitive bacteria. (C) Increased treatment with drug 2 (t2) reduces preva-
lence of bacteria resistant to drug 1 but increases the prevalence of
sensitives, up to the point at which resistants have been driven extinct;
thereafter, it reduces the prevalence of sensitives. (D) Individuals treated
with drug 2 are at higher risk of carriage of drug 1-resistant bacteria at
equilibrium, although increased total use of drug 2 (t2) reduces prevalence
of drug 1-resistant carriage. Shown are prevalences of sensitive (blue) and
resistant (red) bacteria in individuals who have been treated with drug 2
(solid curves) and those who have not (dashed curves). Parameters (except
when parameter is varied along x-axis): b 5 1.0yday, c 5 0.05, m 5 1y(10
days), g 5 1y(30 days), m 5 0.75, t1 5 1y(5 days), t2 5 1y(10 days).
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understood intuitively as the replacement of resistant bacteria by
the drug-sensitive bacteria brought in by newly admitted pa-
tients. Because the average length of stay in most hospital units
is on the order of a week or two (see Table 1), this turnover
occurs quickly, so that when conditions become less favorable for
maintaining resistant bacteria, they are rapidly replaced. The
process also can be understood analytically. One way to measure
the effect of an intervention is to consider changes in r, defined
as the prevalence ratio of hosts carrying resistant to those
carrying sensitive bacteria, r 5 RyS. This ratio changes at a rate

dr

dt
5 S2mm

S
1 t1 2 bcXDr.

Thus, if a hospital were to discontinue the use of drug 1, and if
the fitness difference between sensitive and resistant bacteria
were relatively small (c '0), then the ratio would decline at a rate
of at least mm, the rate of admission of new individuals carrying
sensitive bacteria. Using the values in Table 1, reasonable values
of mm fall between 0.01 and 0.15 day21, corresponding to
characteristic time scales between a week and 3 months. These
time scales give rough upper bounds on the amount of time it
should take for this ratio to fall by about 70% after discontin-
uation of use of drug 1. The slowest time scales correspond to

bacteria that are rarely carried by admitted patients and to
hospitals or units with very long average stays; the faster ones
correspond to species, such as E. coli, that are commonly carried
by incoming patients, and to units with shorter average stays. As
the simulations show, changes that are less dramatic than a total
cessation of use of a particular antibiotic produce slower changes
in resistance, but still produce substantial results within a short
period (months).

As a final consideration about dynamics, we re-examine the
question of individual effects (as measured by the odds ratio for
carrying resistant bacteria) versus population effects (as mea-
sured by the prevalence of resistance in the hospital). Switching
from use of drug 1 to use of drug 2 in the hospital brings a faster,
and more complete, reduction in drug 1 resistance than does a
reduction in drug 1 alone, as illustrated by a comparison between
the blue and green curves (Fig. 3A). However, during the period
just after such a hospital-wide switch from drug 1 to drug 2 (as
might occur in a hospital cycling program), individuals who have
received drug 2 will be at increased risk of carrying resistance to
drug 1. This dynamical result, shown in Fig. 3B, parallels the
equilibrium result of Fig. 2D. Once again, the reason for this
discrepancy is that use of drug 2 makes individuals who were
previously carrying sensitive bacteria susceptible to acquiring
resistant ones, thereby increasing individual risk; however, use of
drug 2 at the population level helps to clear carriage of bacteria
resistant to drug 1, thereby providing a benefit.

Discussion
This model makes a number of testable predictions. Of these, the
most interesting are that: (i) use of an antibiotic for which
resistance is not present will be positively associated at the
individual level with carriage of bacteria resistant to another
antibiotic but negatively associated at the population level with
the prevalence of resistance to the other antibiotic; (ii) reduc-
tions in within-hospital bacterial transmission will dispropor-
tionately reduce the prevalence of resistant bacteria; and (iii)
changes in the prevalence of resistance after a successful inter-
vention will take place on a time scale of weeks to months,
considerably faster than in community-acquired infections.

Epidemiologic studies in hospitals also have confirmed that a
history of treatment with one antibiotic is frequently a risk factor
for individual patients carrying bacteria resistant to another
antibiotic. In many cases, there are simple explanations for this
association, which do not involve the mechanisms proposed by
our model; for example, resistance to the two antibiotics may be
coded for by the same gene or mutation (e.g., two cephalospo-
rins), or by different genes located on the same plasmid (33).
Similarly, treatment with a drug to which all bacteria of a
particular species are resistant may remove competing bacteria
and promote overgrowth of the species of concern, which may in
turn be resistant to other drugs. This appears to be the expla-
nation for the observation that treatment with cephalosporins,
which are ineffective against enterococci, is a risk factor for
vancomycin-resistant enterococcus (VRE) (34, 35). However,
the model predicts that such an association should be found even
when these factors are not at work, and several studies have
shown such associations (24, 36, 37); for example, ciprofloxacin
use has been documented as a risk factor for plasmid-borne
resistance to beta-lactams in enterobacteria, and for plasmid-
borne vancomycin resistance in enterococci, although quinolone
resistance is chromosomal. It is possible in principle that in each
of these hospitals, bacteria resistant to quinolones also tended to
carry other, plasmid-borne resistance genes, but none of the
studies has reported whether such an association exists.

Prediction ii is easily tested in principle, but in practice it is
rarely tested in its pure form, because most interventions
designed to control resistance in a hospital combine general
infection control measures with measures targeted specifically at

Table 1. Values of some important parameters and published
sources for these values

Name Meaning Values Source

1/m Average duration of hospital
stay

7–20 days (7, 13, 46, 54)

m Proportion of admitted
already colonized with
sensitive bacteria

20–100% (55, 56)

1/g Average time from
admission or colonization
until spontaneous
clearance of bacterial
carriage

30–60 days (39)

1/l Average time from
admission to colonization

6–50 days (3, 7, 39, 57, 58)

A B

Fig. 3. The prevalence of carriage of bacteria resistant to drug 1 changes
rapidly over the weeks after changes in hospital practice (at day 0), starting
from an equilibrium where only drug 1 was being used. Parameters: m 5 1y(10
days), g 5 1y(30 days), m 5 0.75, c 5 0. Before day 0: b 5 1yday, t 1 5 1y(5 days),
t2 5 0. (A) Effects of reducing transmission rates (b) by 30% (black curve),
reducing the use of drug 1 (t1) (green curves) by 50% (dashed) or 100% (solid),
or replacing 50% (dashed) or 100% (solid) of use of drug 1 by use of drug 2
(blue curves). Addition of drug 2 makes the decline in resistance to drug 1
faster and larger than reduction of drug 1 alone. (B) Carriage of resistance to
drug 1 after a switch from use of drug 1 only to use of drug 2 only (same as solid
blue curve), in individuals who have (dashed curve) and have not (solid curve)
received drug 2. After about 7 days, drug 2 treatment becomes a risk factor for
drug 1 resistance, even though use of drug 2 is aiding in the reduction of
resistance to drug 1 in the hospital.
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resistant bacteria, such as antibiotic use restrictions or cohorting.
Also, colonization levels with sensitive bacteria often are not
reported. Nonetheless, the use of infection control measures or
prophylaxis with unrelated antibiotics does seem to have a
particularly strong effect on resistant bacteria (4, 5, 38).

Prediction iii is consistent with the results of a number of
empirical studies, in which interventions in hospitals produce
rapid reductions in levels of resistance (13, 38–41). Further-
more, this prediction contrasts with both the predictions of
mathematical models (16, 42) and the empirical record (16, 43,
44) of responses to interventions designed to control resistance
in community-acquired infections. Changes in the prevalence of
resistant community-acquired infections typically occur over
several years. It is also interesting to note that in this hospital
infection model, unlike models of community-acquired infection
(9, 16, 42, 45), the frequency of resistance can decline rapidly
even when resistance carries no fitness ‘‘cost’’ for the bacteria.
This occurs because sensitive bacteria enter the hospital with
newly admitted patients, and this ‘‘immigration’’ allows sensitive
bacteria to ‘‘wash out’’ resistant bacteria when there is not
sufficient selective pressure to maintain resistance.

Each of the three key predictions of the model depend on the
assumption that some or all individuals enter the hospital already
colonized with antibiotic-sensitive bacteria of the species of
interest. Thus, they are expected to hold for hospital-acquired,
but not community-acquired infections, and this expectation is
confirmed by available data. These predictions show that minor
variations in the mathematical structure of models for commu-
nity-acquired vs. hospital-acquired infections can result in sub-
stantial changes in predictions, suggesting that some conclusions
of prior models, including those by the present authors, should
be reconsidered before applying them to hospital situations (9).

These results suggest several principles for the choice of inter-
ventions to control resistance and the assessment of their success.
The first principle is that successful interventions in hospitals should
show measurable results within weeks to a few months, and studies
should be designed to look for such rapid changes. A corollary is
that if resistance does not decline on the scale of weeks to months
after cessation of antibiotic use, one might suspect that a reservoir
(e.g., contaminated surfaces in the hospital, patients with very long
durations of stay, or hospital personnel) may be maintaining the
prevalence of resistance at high levels.

The second principle is that it is important to measure the
effects of antibiotic use both at the individual level (risk factors)
and at the ecological level (population prevalence); equivalently,
one should distinguish between the effects on an individual of
hisyher own treatment with an antibiotic, and the effects of use
of that antibiotic by others in the hospital. Few studies measure
both (for an exception see ref. 46); typically observational
epidemiologic studies focus on individual risk factors, whereas
intervention studies usually measure population prevalences. If
one looked only at individual risk factors, an association between
resistance to one antibiotic and prior use of a second might
misleadingly suggest that resistance to the first could be reduced
by curtailing use of the second. Similarly, risk factors in a study
of an antibiotic cycling program might suggest that use of the
second antibiotic was prolonging resistance to the first, while in
fact it was speeding the decline of that resistance. The distinction
between individual-level risks and population-level effects is well
known in general (47) and has been elegantly described by
Koopman and Longini (48) in the context of infectious disease
epidemiology.

Mathematical models simplify some aspects of transmission
dynamics to enhance understanding of other aspects. The
present model may be compared with the recent model of Austin
et al. (15); both describe the transmission dynamics of bacteria
in a hospital or intensive-care unit, but the two papers focus on
different aspects of the transmission process. Austin et al. (15)

analyzed a model for the transmission dynamics of VRE in an
intensive-care unit, using parameters estimated from Cook
County Hospital in Chicago. The model considered some aspects
of transmission not explicitly modeled here, in particular the
dynamics of HCWs as vectors of contamination between pa-
tients. This study permitted the estimation of rates of VRE
transmission from colonized patients to HCWs, and separately
transmission from HCWs to uncolonized patients, and allowed
the authors to compare the benefits of cohorting and barrier
precautions to reduce the spread of VRE. An interesting
prediction of their model was that the prevalence of contami-
nation in HCWs may be low although the HCWs are responsible
for much or all VRE transmission. In the unit studied, a 15%
VRE colonization rate among admitted patients guaranteed the
endemic persistence of VRE despite successful control mea-
sures.

The model in this paper was more detailed in its consideration
of both sensitive and resistant bacteria and of treatment with
different drugs, both those for which resistance is present and
those for which it is not. This model therefore was able to
separate the effects of treatment with different drugs on the
prevalence of resistance, describe the contrast between individ-
ual-level and population-level effects, and make general state-
ments about the direction and rapidity of changes in resistance
after interventions. On the other hand, this paper did not
consider the role of HCWs as vectors or attempt to estimate the
parameters of the model for a particular hospital.

Finally, we consider the impact of some of the simplifying
assumptions of our model. One such assumption is that individ-
uals, once colonized with either sensitive or resistant bacteria, do
not become colonized with the other type unless they are first
cleared by treatment (or spontaneously). We have analyzed a
model that relaxes this assumption and includes such ‘‘superin-
fection.’’ Although the algebra of the superinfection model is
more complicated, the predictions remain qualitatively un-
changed, except for prediction ii above. If superinfection is very
common, and if transmission rates are also very high, then
reductions in within-hospital transmission can have strange
effects, in some cases actually increasing the total prevalence of
resistance.

A second simplifying assumption is that individuals enter the
hospital carrying sensitive bacteria or none at all, but not
carrying resistant bacteria. All three predictions of the model
continue to hold if a relatively small proportion of patients enter
the hospital carrying resistant bacteria. If the proportion of
patients entering with resistant bacteria is large, then the decline
of resistance will, of course, be slower. In numerical runs of the
model, we have found that if this proportion is very large (e.g.,
30%), the odds ratio result, prediction i, will no longer hold,
though it holds for lower values. Prediction ii holds for all
parameters we have tried. A difference is that if individuals are
allowed to enter the model already carrying resistant bacteria,
then colonization with both resistant and sensitive bacteria is
reduced as transmission rates are reduced. In summary, the
model in its present form is a good approximation as long as the
proportion of patients entering with resistant bacteria is modest
compared with the endemic prevalence in the unit. In fact, the
prevalence of colonization with resistant bacteria on admission
ranges from a few percent to 15–18% in recent studies (35, 36,
49–52), which is considerably lower than the endemic prevalence
in many cases. The model can be readily modified to quantita-
tively evaluate the consequences of having a greater fraction of
the patients entering hospitals carrying resistant bacteria.

A more complex model also might include such factors as
multiple bacterial species colonizing the same individual, the
potential exchange of plasmid-borne multiple drug resistance,
variation among patients in the length of hospital stay, and other
factors. Because intensive-care units tend to be small, stochastic
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events may play an important part in the dynamics of resistance
in these settings (14, 46). We believe that the particular model
considered here (for which resistance to drug 2 is assumed to be
absent) may be useful in understanding the short-term dynamics
of resistance in hospitals but is almost certainly inappropriate for
understanding longer-term or global trends in antibiotic resis-
tance. In the longer run, of course, what one obtains in hospitals
with respect to the dissemination of resistant bacteria will reflect
what is happening in the community at large. The more appro-
priate models for regional, national, or global patterns of
resistance over a number of years are the population genetic
models (42, 53) and the compartment models (9, 17, 26, 27, 29,
45), in which importation of exogenous bacteria does not drive
the population dynamics.

Because of the complexity of commensal bacterial commu-
nities within hosts and the variation in diseases and treatment

among patients in any real hospital, we are skeptical of the
ability of such models as these to ‘‘fit’’ accurately the data
from a particular hospital. Rather, we believe that these
models are primarily useful in identifying the key variables
determining the prevalence of resistance in hospitals and its
rate of change, making predictions for the population-level
effects of interventions that can be tested in clinical studies,
and identifying the key outcomes that should be measured in
those studies.
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