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Hospital-acquired infections caused by antibiotic-resistant bacteria
pose a grave and growing threat to public health. Antimicrobial
cycling, in which two or more antibiotic classes are alternated on
a time scale of months to years, seems to be a leading candidate
in the search for treatment strategies that can slow the evolution
and spread of antibiotic resistance in hospitals. We develop a
mathematical model of antimicrobial cycling in a hospital setting
and use this model to explore the efficacy of cycling programs. We
find that cycling is unlikely to reduce either the evolution or the
spread of antibiotic resistance. Alternative drug-use strategies
such as mixing, in which each treated patient receives one of
several drug classes used simultaneously in the hospital, are
predicted to be more effective. A simple ecological explanation
underlies these results. Heterogeneous antibiotic use slows the
spread of resistance. However, at the scale relevant to bacterial
populations, mixing imposes greater heterogeneity than does
cycling. As a consequence, cycling is unlikely to be effective and
may even hinder resistance control. These results may explain the
limited success reported thus far from clinical trials of antimicrobial
cycling.

Nosocomial infection is a major contributor to mortality,
morbidity, length of hospital stay, and the economic cost of

health care (1, 2). Antibiotic resistance exacerbates the problem.
Resistance increases the chance that a patient receives insuffi-
cient therapy and thus further increases the risks and costs
associated with nosocomial infection (2–6). As such, the evolu-
tion and spread of antibiotic-resistant bacteria poses a grave
threat, particularly in intensive-care units. In these units, anti-
biotic use is high, opportunities for transmission are abundant,
and many patients are immunocompromised or otherwise sus-
ceptible to infection by opportunistic pathogens (7, 8).

Although several new antimicrobial drugs have recently been
introduced and additional ones are forthcoming, experience
suggests that, as new drugs become widely deployed, resistance
to these agents will emerge and spread as well. Successful control
of antibiotic resistance will require both the continued devel-
opment of new drugs and the judicious use of our current arsenal
of antibiotics.

Many authors have suggested that antimicrobial cycling, in
which the empiric use of two or more classes of antibiotics is
alternated over a time scale of months to years, may slow the
evolution and spread of resistant and multiply resistant bacterial
strains (7, 9–13). The motivation is straightforward. Should
resistance to one class of drugs reach high frequency in a hospital
ward, a scheduled switch of antibiotic classes would soon follow,
leaving most of the bacterial strains in the hospital susceptible to
the new therapy (14, 15). Moreover, f luctuating patterns of
antimicrobial use may reduce the rate at which drug-sensitive
strains can acquire resistance to single or multiple antibiotics. In
addition to the intuitive appeal of these arguments, more than
two decades of experience have shown that a one-time formulary
shift can effectively control a hospital epidemic of antibiotic-
resistant strains (16–22), as can a single rotation through a series
of alternative drugs (23).

Nonetheless, we have little substantive evidence, empirical or
theoretical, that repeated cycling will be effective as a long-term

strategy to slow the emergence and spread of antibiotic resis-
tance. Several intervention trials of cycling are currently under-
way, but the results reported to date are mixed. These studies
either fail to show any advantage to cycling (24) or merely hint
at possible advantages (15, 25). Because each of these studies
uses a quasi-experimental design (with historical controls), it is
difficult to distinguish the effects of cycling from the general
effect of having a well-publicized, specific antimicrobial policy
(26). Concomitant interventions in some of the studies (23, 27,
28) further complicate inference about the specific effects of
cycling programs (29, 30). No theoretical models of cycling in a
hospital setting have been published, and theoretical work on
cycling in the greater community suggests that cycling will
actually facilitate the spread of resistant strains (31).

In this article, we develop a mathematical model of antimi-
crobial cycling in a hospital setting. We show that cycling is
unlikely to reduce rates of resistance carriage relative to alter-
native drug-use programs and present an ecological model to
explain these findings. The primary purpose of the mathematical
models used in this article is to isolate and illustrate the
fundamental ecological processes that will be responsible for the
success or failure of antimicrobial cycling programs, rather than
to develop precise quantitative predictions. Thus, we concen-
trate on the general mathematical properties of the dynamical
system, rather than on parameter estimation and forecasting.

Modeling Antibiotic Cycling in a Hospital Setting
The ecology of hospital-associated bacteria differs from the
ecology of the microbes responsible for most community-
acquired infections, in three ways. First, a hospital is an open
system, with a daily influx and efflux of patients. By contrast, a
community is relatively closed, in that individuals enter or leave
at much lower rates. Second, unlike the obligate pathogens
responsible for many community-acquired infections, most bac-
terial species responsible for hospital-acquired infections are
commensals that induce pathology only if they opportunistically
colonize sterile sites, such as the bloodstream or the lower
respiratory tract. Thus many patients enter the hospital asymp-
tomatically colonized with the species responsible for nosoco-
mial infection, and antimicrobial use is typically uncorrelated
with colonization status. In some cases, prior colonization with
sensitive strains is partially protective against colonization by
resistant strains. Third, antimicrobial drugs are used at a much
higher rate in the hospital than in the community at large.

To account for these features, we previously developed a
mathematical model of the transmission and spread of antimi-
crobial resistance in a hospital setting (32, 33). The model is
tailored for the transmission dynamics of organisms that are
frequently transmitted between hosts in the hospital, most
importantly the Gram-positive cocci such as Staphylococcus
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aureus and Enterococcus species (34). The model may also be
used to consider the dynamics of Gram-negative bacteria, al-
though, in its present form, it excludes the processes of endog-
enous selection of resistance by mutation or by outgrowth of a
subpopulation, which may be especially important in these
organisms (35). The model successfully accounts for a number of
surprising features of hospital-acquired infections, including the
rapid rate of change in response to interventions, the efficacy of
nonspecific control measures such as hand-washing, and the
observation that use of one drug is an individual risk factor for
acquisition of resistance to other drugs, even in the absence of
cross-resistance or associated linkage selection.

Here, we extend the earlier model to see whether antimicro-
bial cycling can be effective at controlling resistance. We con-
sider the following scenario. Two antimicrobials, drug 1 and drug
2, are available. Strains resistant to each drug individually are
present. Because a strain resistant to both drugs would be equally
unaffected by both drugs (and therefore not directly affected by
the particular drug treatment policies in use), we assume that
dual resistance has not yet emerged. Our model, illustrated in
Fig. 1, tracks several groups of patients according to their
colonization status. The X group or compartment represents
patients who are uncolonized by the bacterial species of interest.
The S compartment represents the patients colonized by sus-
ceptible bacteria of this species. For the purposes of this model,
the uncolonized label refers to epidemiological properties rather
than microbiological ones: the uncolonized group includes not
only those patients who are entirely uncolonized by the species
of interest, but also those who carry sufficiently small popula-
tions that (i) they are unlikely to transmit to other patients and
(ii) they are more likely than fully colonized patients to be
superinfected by new strains.

The two R compartments, R1 and R2, represent patients
colonized by strains resistant to drug 1 and drug 2, respectively.
Individual patients may enter the hospital in any of the states X,
S, R1, and R2, and they do so at rates �(1 � m � m1 � m2), �m,
�m1, and �m2 per day. Here � represents the rate of patient
turnover in the hospital. Regardless of colonization state, pa-
tients leave the hospital after an average stay of 1�� days. If
untreated, patients colonized with susceptible bacteria remain
colonized on average 1�� days. Drug 1 is used at a rate �1 per

day and drug 2 at a rate �2 per day; drug use clears any strain not
resistant to that drug.

Uncolonized individuals are colonized at rates proportional to
the frequencies of each strain, with a rate constant of �.
Parameters c1 and c2 represent the ‘‘fitness cost’’ to a bacterium
of being resistant in the absence of drug use. Colonized indi-
viduals may have their bacterial population replaced by ‘‘super-
colonization’’ with bacteria transmitted in the hospital; the
parameter � determines the rate of this secondary colonization
relative to that of primary colonization.

For cycling protocols, the parameter � represents physician
compliance with the cycling program and is equal to the fraction
of patients that receive the currently indicated drug instead of a
randomly chosen therapy. Thus when � � 1, all patients receive
the currently indicated therapy, and, when � � 0, half of the
patients receive drug 1 and half receive drug 2.

In this model, we assume that strains resistant to both anti-
biotics have not yet appeared. In reality, multiple resistance is
common in intensive-care units and other hospital wards. In
some cases, multiple resistance may include resistance to both
classes being considered for cycling or mixing. Although it is
important to devise antimicrobial policies for these situations,
the cycling and mixing policies considered here are unlikely to
differ significantly in impact because the dually resistant strain
will be impervious to the use of these antibiotics regardless of the
protocol.

Results
By numerically solving the differential equations given in Fig. 1,
we can see how the expected frequency of each bacterial strain
changes over time. Fig. 2 shows that cyclic use of antibiotics
results in cyclic incidence of strain frequencies. Each time a new
drug is instituted, the frequency of the strain resistant to that
drug climbs, whereas the frequency of the strain resistant to the
unused drug declines. Immediately after each switch of drugs,
strains resistant to the newly instituted therapy are rare, and the
new antibiotic is temporarily more effective than usual. As a
result, the curve representing the fraction of uncolonized pa-
tients surges upward briefly after each switch.

To determine whether cycling is effective at reducing resis-
tance carriage, we compare the average fraction of patients
carrying resistant bacteria, given by the time integral � R1(t) �
R2(t) dt, that occur under cycling to the average fraction carrying
resistant bacteria under an alternative treatment protocol. This
alternative protocol, which we label ‘‘mixing,’’ randomly assigns
drug 1 to half of the treated patients and assigns drug 2 to the
other treated patients. Mixing is a reasonable approximation of
current usage patterns in most units and, as such, serves as a

Fig. 1. Schematic diagram of the model and the corresponding differential
equations. The color coding associates mathematical terms with ecological
processes. Red represents infection, yellow represents supercolonization, blue
represents clearance, and black represents influx and efflux.

Fig. 2. Strain frequencies over time, for a cycling program with a drug switch
every 90 days and 80% compliance (� � 0.8). Parameter values: � � 1, c � 0,
� � 0.03, m � 0.7, m1 � .05, m2 � .05, �1 � �2 � 0.5, � � 0.1, � � 0.25, and
� � 0.8.
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natural baseline for comparison when judging the efficacy of
cycling.

Fig. 3 shows the total number of resistant cases when cycling
occurs with periods of 365, 90, and 14 days, respectively. The
total fraction of resistant strains in the hospital (solid lines) is
higher for longer cycle periods. During the majority of each
cycle, the total fraction resistant is greater than the total fraction
resistant under mixing (dashed lines). This trend seems to hold
quite generally over a wide range of parameters (data not
shown).

The overall effect of cycle period is illustrated in Fig. 4, a
parametric plot showing average total resistance over time as a
function of cycle period. In Fig. 4, the average fraction of patients
colonized by a resistant strain is greater for cycling of any period
than for 50–50 mixing and, indeed, increases monotonically with
cycle period. As cycle period approaches zero, total resistance
approaches that observed for 50–50 mixing; this convergence is
unsurprising, in that mixing is equivalent to cycling with a very
short period.

To assess the robustness of these results, we randomly selected
100 parameter sets to provide broad coverage of parameter
space, as follows. For each parameter set, incoming strain
frequencies were selected from a uniform distribution on the
three-dimensional simplex. The � values were selected from a log
uniform distribution on [0.001,1], the costs of resistance to each
of the two drugs were selected independently from a uniform
distribution on [0, 0.5], the total rate of drug use was selected
from a uniform distribution on [0,1], and the rate of supercolo-
nization (relative to colonization) was selected from a uniform
distribution on [0,1]. In all 100 parameter sets, we observed the
qualitative pattern illustrated in Fig. 4: total resistance is lower
for mixing than for any cycling period and increases monoton-
ically with cycle length. Across parameter sets, the magnitude of
this increase ranged from negligible to an additional 30%
incidence of resistant colonization as a result of cycling.

Why Cycling Fails to Reduce the Incidence of
Resistant Bacteria
The basic rationale for cycling is that fluctuating selection
pressures will reduce the rate of adaptation or the ability of an
evolving population to track its environment. Niederman (14)
summarized this intuition in an early review on antimicrobial
cycling:

The ‘‘crop rotation’’ theory of antibiotic use has sug-
gested that if we routinely vary our ‘‘to go’’ antibiotic in
the ICU, we can minimize the emergence of resistance
because selection pressure for bacteria to develop resis-
tance to a specific antibiotic would be reduced as
organisms become exposed to continually varying anti-
microbials.

Niederman’s explanation encompasses two separate potential
advantages to cycling. First, cycling may limit the spread of
resistance alleles currently present in the population. Control of
already-present alleles is the aim of most resistance-management
interventions and the subject of this section. Second, cycling may
inhibit the formation of novel resistance alleles or resistance
allele combinations. We address this possibility in Emergence of
New Resistance.

Consider a set of alleles present in a population and subject to
fluctuating selection. We might expect that the relative frequen-
cies of these alleles will more closely match the demands of the
environment when selective conditions fluctuate less rapidly. In
a slowly changing environment, we might expect currently
favored alleles to be at higher frequency, more of the time, than
in a rapidly changing environment. Although such claims seem
intuitively straightforward, we are unaware of a clear analytical
treatment of this issue anywhere in the population biology
literature. To demonstrate that the argument is indeed feasible,
we have developed a simple illustrative model, presented in
Appendix. We consider a symmetric model of fluctuating selec-
tive conditions, with two environments and two alleles, and we
assume that individuals carrying each allele enter the population
at some nonzero rate, as would be the case for a hospital when
resistance is present in the community. We find that the average
degree to which the population is adapted to the current
environment increases monotonically with the period of envi-
ronmental f luctuation. That is, slower environmental change
results in a closer match between individuals and environment.

Thus, both Niederman’s basic intuition about environmental
f luctuation and the results from our appendix suggest that
slower cycles lead to better-adapted populations. By contrast,
our findings in Results suggest that resistent bacteria fare better
under cycling than under a static mixing ratio. Why the
discrepancy?

The answer lies in the scale at which heterogeneity is experi-
enced by bacterial clones in a hospital. At the scale relevant to
bacterial populations, mixing rather than cycling imposes greater
fluctuation in selective conditions. We can see this principle by

Fig. 3. Fraction of patients carrying resistant bacteria, for cycle lengths of 1 yr, 3 months, and 2 weeks, respectively. Solid lines, total fraction of patients
colonized with resistant bacteria under cycling; dashed lines, total fraction of patients colonized with resistant bacteria under a 50–50 mixing regime. By this
measure, mixing outperforms cycling. Parameters are as in Fig. 2.

Fig. 4. Average total resistance as a function of cycle period, calculated
numerically. Solid lines, average total fraction of patients colonized with
resistant bacteria under cycling; dashed lines, total fraction of patients colo-
nized with resistant bacteria under a 50–50 mixing regime. Parameters are as
in Fig. 2.
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envisioning the selective regime faced by a bacterial clone as it
spreads among patients in a hospital. Under a cycling program,
the clonal population experiences consistent selective conditions
until the next cycle, usually a period of many months. Under a
mixing program, by contrast, the clonal population will experi-
ence fluctuating selective conditions on a much shorter timescale
as it spreads from patient to patient, some of whom are under
treatment with one drug and others under treatment with
another.

Fig. 5 illustrates the time course of a single clone in a hospital
setting. Each square represents a patient in a hospital bed; gray
squares receive treatment with drug 1, whereas white squares
receive treatment with drug 2. In a ward where drugs are mixed,
the fractions of patients receiving drug 1 and drug 2 do not
change appreciably over time. In a ward with cycling, the
fractions receiving each drug change considerably over time. At
any given time, however, each individual bacterial clone faces a
selective regime defined by the drug used by a single patient, not
by the ward average. Thus, in the course of patient-to-patient
transfer, a bacterial clone actually faces more rapid environmen-

tal f luctuations in the mixing ward. In Fig. 5 Left (mixing), the
clone tracked by the solid line faces a new drug five times during
the span of the diagram. By contrast, the clone tracked in Fig. 5
Right (cycling) faces a new drug only once, during the mass
switch-over from drug 1 to drug 2.

Thus, mixing provides a more heterogeneous environment
than does cycling at the single-patient scale, despite its constancy
in treatment protocol at the scale of the ward.

Emergence of New Resistance
Multiply resistant strains of bacteria often arise through lateral
gene transfer of antibiotic resistance genes (36, 37). This process
requires that a donor strain resistant to one drug encounter a
recipient strain resistant to the other drug. Such encounters will
occur at a rate proportional to the frequency with which patients
carrying one resistant strain encounter bacteria of the other
resistant strain. This rate can be approximated by (some constant
multiplied by) the product of the fraction of patients colonized
by each resistant type in the hospital. Thus, in the two-drug,
two-resistance example above, the instantaneous probability
(hereafter called, imprecisely, the ‘‘rate’’) of generating multiple
resistance is proportional to R1(t) � R2(t), and the chance that
a strain acquires a novel combination of resistance genes is to a
first-order approximation proportional to the mean product
�R1(t) � R2(t) dt.

When the two resistant strains are at similar frequencies in the
community and have similar costs of resistance, cycling between
two alternative antibiotics can reduce this mean product relative
to mixing because the cycling program never positively selects on
both strains at the same time. As a result, either R1(t) or R2(t)
should always be at low frequency, and thus the product R1(t) �
R2(t) should always be small. Fig. 6 A–C shows the time course
of the product R1(t) � R2(t) for the parameter values given in Fig.
2. The product is always lower under cycling than under mixing.
Fig. 7A shows the mean product as a function of cycling period
for these parameter values. As cycling period increases, the rate
of generating multiple resistance decreases monotonically.

When the two resistant strains differ in their community
prevalence or in their resistance costs, cycling is less likely to
reduce the rate of generating multiple resistance. Fig. 6 D–F
shows the time course of the product R1(t) � R2(t) when the
strain resistant to one drug is more common in the community
than that resistant to the other. Here, multiple resistance is

Fig. 5. Effects of cycling and mixing on the selective conditions faced by a
bacterial clone. Cycling offers greater heterogeneity at the level of the ward,
but mixing offers greater heterogeneity at the level of the individual patient.

Fig. 6. Rate at which novel multiresistant strains are generated, as measured by R1(t) � R2(t) dt. (A–C) Symmetric input of strains into the hospital. Parameters
are as in Fig. 2. (D–F) Asymmetric input of strains into the hospital. Parameters are as before, but with m1 � 0.19, m2 � 0.01, and m � 0.6. Solid lines, cycling;
dashed lines, mixing.
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expected to arise more quickly under cycling than under mixing.
Fig. 7B shows the mean product as a function of cycling period
for these asymmetric parameter values. The relation between
cycling period is no longer monotone, but here cycling always
performs worse than mixing.

To assess the overall efficacy of cycling as a strategy for
slowing the emergence of multiple resistance, we derived para-
metric plots analogous to those in Fig. 7 for each of the 100
random parameter sets described in Results. For only 4 of these
100 parameter sets did cycling periods of 2 weeks or longer
reduce the rate at which multiple resistance emerged, relative to
mixing. Furthermore, systematic numerical exploration revealed
that, relative to mixing, a cycling program is more likely to slow
multiple resistance evolution as (i) the fraction of incoming
strains resistant to drug 1 and drug 2 becomes more symmetric,
(ii) the fraction of incoming patients carrying resistance de-
creases, (iii) the total drug use increases, and (iv) the resistance
costs decrease.

Why does cycling fail to slow the generation of multiple
resistance when strain frequencies are asymmetric in the com-
munity? Cycling alternates between two treatment regimes: one
in which the common strain is positively selected and the rare
one is unselected and one in which the converse occurs. During
the former, the common strain reaches high frequency, but the
rare strain stays rare in the hospital. The result is a low product
R1(t) � R2(t). During the latter, the rare strain is positively
selected and thus reaches high frequency in the hospital, whereas
the common strain, although unselected, enters at a relatively
high rate. The result is a high product R1(t) � R2(t). Relative to
mixing, the advantages gained by reducing the product during
the former regime are outweighed by the costs of increasing the
product during the latter, for a higher mean rate of multiple
resistance evolution.

Although cycling may reduce the rate of multiple resistance
evolution under certain restricted circumstances, this advantage
is unlikely to be compelling in practice. Normally, the frequen-
cies of the different resistant strains will be asymmetric; further-
more, we will rarely have sufficient information about these
frequencies and other relevant parameters to determine that we
are in a range of parameter space for which cycling is advanta-
geous. Finally, even when cycling can slow the emergence of
multiple resistance, our model predicts that any cycling program
will reap this benefit at the expense of an increased average
incidence of single resistance. This latter measure is likely to be
a greater concern in most hospitals, most of the time.

Conclusions
Systematic programs of antimicrobial cycling are touted as likely
strategies for reducing the spread of antibiotic-resistant bacteria
in hospitals. Here, we have shown that the proposed mechanism
by which cycling would have this effect is untenable on theoret-

ical grounds. Although the models here treat bacterial trans-
mission within the hospital as a deterministic process, our results
are echoed by Monte Carlo simulations of stochastic transmis-
sion, even for small hospital wards (unpublished results).

Models alone are necessarily simplifications of reality, and,
therefore, our work here cannot rule out the possibility that
cycling could be beneficial in resistance control. Clinical trials
will be needed to address that matter definitively. If those trials
do indicate a real benefit to cycling, however, the present model
suggests that advocates of antimicrobial cycling will need to
revisit the matter of why such benefits accrue.

Appendix
Here, we explore a simple model originally studied by Lachmann
and Jablonka (38). Our analysis differs from theirs in that we fix
mutation and migration and treat the rate of environmental
change as our control variable; they do the converse. Our aim
differs as well. We seek to illustrate the intuition that rapid
environmental f luctuations reduce the ability of a population to
track its environment by adaptive change in allele frequencies.

As a simplest possible case, we consider an asexual population
with two genotypes, 1 and 2, undergoing unconstrained expo-
nential growth. Growth rate is determined by the environment,
which cycles symmetrically between two possible states A and B.
In state A, genotype 1 grows at rate r � d and genotype 2 grows
at rate r � d. In state B, growth rates are reversed: genotype 1
grows at r � d and 2 grows at r � d. Individuals leave the
population at rate 2� and are replaced by emigrants from an
outside pool composed of 50% genotype 1 individuals and 50%
genotype 2 individuals. (This migration process could alterna-
tively be interpreted as a mutation process with rate �.)

Let n0 be the vector (x1, x2) representing the number of
individuals of genotype 1 and genotype 2 at time t0. After a single
cycle of time t in state A followed by an equal time t in state B,
the new population vector n2t will be n2t � eM2teM1tn0, where M1

and M2 are the matrices

M1 � ��1 � ���r 	 d� ��r � d�
��r 	 d� �1 � ���r � d��, [1]

M2 � ��1 � ���r � d� ��r 	 d�
��r � d� �1 � ���r 	 d��. [2]

For this model, the average rate of population growth gives us
an excellent indication of how well the population is able to
adaptively track its environment. We measure average popula-
tion growth by the log asymptotic growth rate:

f� �
1
t

ln�
�	
� , [3]

Fig. 7. Average rate of dual resistance acquisition as function of cycle period. (A) Symmetric input of strains into the hospital. (B) Asymmetric input of strains
into the hospital. Solid lines, cycling; dashed lines, 50–50 mixing regime. Parameters are as in Fig. 6.
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where 
[	] is the dominant eigenvalue of the full-cycle growth
matrix [the monodromy matrix in Floquet theory (39)] given by
	 � eM2teM1t. To compute f�, we define P as the permutation
matrix

P � �0
1

1
0� [4]

so that M2 � PM1P. This result allows us to rewrite the full-cycle
growth matrix as 	 � ePM1PteM1t � PeM1tPeM1t � (PeM1t)2 and then
find the dominant eigenvalue of this simpler matrix. First,

eM1t �
1
�

e�1���rtsinh�� t��M1 � �1 � ��rI
 	 e �1���rtcosh�� t�I ,

[5]

where I is the identity matrix and �2 � �2r2 � (1 � 2�)d2. With
the notational simplifications a � e(1��)rt, s � sinh(�t), and c �
cosh(�t), the characteristic equation

�2det�PeM1t � �I� � 0 [6]

becomes

�2�2 � 2��as�r 	 a2s2�2r2 	 a2s2d2 � 2a2s2d2� � a2c2�2 � 0.

[7]

To simplify this equation, we first eliminate d by observing that
(1 � 2�)d2 � �2 � �2r2. Second, because cosh2t � sinh2t � 1
always, c2 � 1 � s2. Applying these, we get

��2 � 2as�r� � a2� � 0. [8]

This simplification gives us the characteristic equation

�2 � 2�
�r sinh � t

�
e �1���rt � e2�1���rt � 0, [9]

� � ef� t. [10]

Finally,

f� � �1 � ��r 	
1
t

ln� �r
�

sinh�� t� 	 �1 	
�2r2

�2 sinh2�� t��
� �1 � ��r 	

1
t

sinh�1� �r
�

sinh�� t�� . [11]

It now remains to show that f� is monotone increasing in t for
all t � 0. To do so, we appeal to the following theorem (T. C.
Reluga, personal communication):

If Q(x) is strictly convex and Q(0) 
 0, then Q(x)�x is
strictly monotone increasing.

We define Q(t) � sinh�1[(�r��)sinh(�t)] so that f� � (1 � �)r �
Q(t)�t and note that, if Q(t)�t is monotone increasing in t, so is
f�. Differentiating Q(t) twice with respect to t, we get:

d2Q
dt2 �

r��d2�1 � 2��sinh� t��

��2 	 r2u2sinh2� t��� �1 	
r2u2sinh2� t��

�2

. [12]

This quantity is positive for t � 0 and 0 � � � (1�2), so Q(t) is
convex in t for t � 0. Because Q(0) � 0, application of the
theorem above implies that Q(t) is monotone increasing in t for
t � 0. Thus, f� is monotone increasing with t for positive t and 0 �
� � (1�2). That is, whenever the mutation rate at this locus is
�50%, decreasing the rate of environmental f luctuation in-
creases the population’s average fit to the current selective
conditions.

We thank Tim Reluga for suggesting the monotonicity proof given in
Appendix. M.L. acknowledges support from a Research Starter Grant
from the PhRMA Foundation and National Institutes of Health Grant
R21 AI0S5825.
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