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Abstract Biologists rely heavily on the language of information, coding, and
transmission that is commonplace in the field of information theory developed by
Claude Shannon, but there is open debate about whether such language is
anything more than facile metaphor. Philosophers of biology have argued that
when biologists talk about information in genes and in evolution, they are not
talking about the sort of information that Shannon’s theory addresses. First,
philosophers have suggested that Shannon’s theory is only useful for developing
a shallow notion of correlation, the so-called ‘‘causal sense’’ of information.
Second, they typically argue that in genetics and evolutionary biology, infor-
mation language is used in a ‘‘semantic sense,’’ whereas semantics are deliber-
ately omitted from Shannon’s theory. Neither critique is well-founded. Here we
propose an alternative to the causal and semantic senses of information: a
transmission sense of information, in which an object X conveys information if
the function of X is to reduce, by virtue of its sequence properties, uncertainty
on the part of an agent who observes X. The transmission sense not only
captures much of what biologists intend when they talk about information in
genes, but also brings Shannon’s theory back to the fore. By taking the view-
point of a communications engineer and focusing on the decision problem of
how information is to be packaged for transport, this approach resolves several
problems that have plagued the information concept in biology, and highlights a
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number of important features of the way that information is encoded, stored, and
transmitted as genetic sequence.

Keywords Information ! Evolution ! Shannon theory ! Natural selection !
Entropy ! Mutual information

Introduction

Biologists think in terms of information at every level of investigation. Signaling
pathways transduce information, cells process information, animal signals convey
information. Information flows in ecosystems, information is encoded in the DNA,
information is carried by nerve impulses. In some domains the utility of the
information concept goes unchallenged: when a brain scientist says that nerves
transmit information, nobody balks. But when geneticists or evolutionary biologists
use information language in their day-to-day work, a few biologists and many
philosophers become anxious about whether this language can be justified as
anything more than facile metaphor (Sterelny and Griffths 1999; Sterelny 2000;
Godfrey-Smith 2000a; Griffths 2001; Griesemer 2005; Godfrey-Smith 2008). Why
do the neurobiologists get a free pass while evolutionary geneticists get called on
the carpet? When neurobiologists talk about information, they have two things
going for them. First, there is a straightforward analogy between electrical impulses
in neural systems and the classic communications theory picture of source, channel,
and receiver (Shannon 1948). Second, information theory has obvious ‘‘legs’’ in
neurobiology: for decades, neurobiologists have profitably used the theoretical
apparatus of information theory to understand their study systems. Geneticists are
not so fortunate. For them, the analogy to communication theory is less obvious.
Efforts to make this analogy explicit seem forced at best, and the most successful
uses of information-theoretic reasoning within the field of genetics rarely make
explicit their information-theoretic foundations or make use of information-
theoretic language (Crick et al. 1957; Kimura 1961; Felsenstein 1971; Freeland
and Hurst 1998).

As a consequence, philosophers have concluded that the mathematical theory of
communication pioneered by Claude Shannon in 1948 (hereafter ‘‘Shannon
theory’’) is inadequate to ground the notion of information in genetics and
evolutionary biology. First, philosophers have unfairly suggested that Shannon
theory is only useful for developing a shallow notion of correlation, the so-called
‘‘causal sense’’ of information. Second, they typically argue that in genetics and
evolutionary biology, information language is used in a ‘‘semantic sense’’—and of
course semantics are deliberately omitted from Shannon theory.

Neither critique is well-founded. In this paper we begin by summarizing the
causal and semantic views of information. We then propose an alternative—a
transmission sense of information—that not only captures much of what biologists
intend when they talk about information in genes, but also brings Shannon theory
back to the fore.
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Causal view of information

Inspired by Dretske (1983), several authors (Sterelny and Griffths 1999; Griffths
2001; Godfrey-Smith 2008; Griffths and Gray 1994) have explored Shannon theory
as a grounding for information language in biology. They derive roughly the
following picture: The key currency in information theory is the entropy H(X) of a
random variable X. The entropy is a measure of uncertainty in the realization of X. If
X takes on value Xi with probability pi, the entropy H(X) =

P
ipilog pi. The key

statistic in information theory is the mutual information I(X;Y) between two random
variables X and Y. The mutual information, defined as I(X;Y) = H(X)-H(X|Y),
measures how much we learn about the value of X by knowing Y. Information is
conveyed in Grice’s sense of natural meaning (Grice 1957): whenever Y is
correlated with X, we can say that Y carries information about X. There is no deep
notion of meaning or coding here. ‘‘[W]hen a biologist introduces information in
this sense to a description of gene action or other processes, she is not introducing
some new and special kind of relation or property’’, Godfrey-Smith writes, ‘‘She is
just adopting a particular quantitative framework for describing ordinary correla-
tions.’’ (Godfrey-Smith 2008). In this causal sense of information, genes carry
information about phenotypes just as smoke carries information about fire, nothing
more. If biologists are using information only as a shorthand for talking about
correlations, this is a shallow use of the information concept compared to what we
see in engineering and communications theory!

Not only is this sense shallow, it fails to capture the directional flow of
information from genotype to phenotype that is the central dogma of molecular
biology (Crick 1970). If, by ‘‘G has information about P,’’ we mean only the mutual
information I(G;P)[ 0, then we are not acknowledging the direction of information
flow from genotype to phenotype (Godfrey-Smith 2000a, 2008; Griffths 2001). The
reason is that the mutual information I is by definition a symmetric quantity;
I(G;P) = I(P;G). While mutual information is a key component of the deeper
applications of Shannon theory that we will discuss later, for now let us consider it
simply as a statistical quantity. Mathematically, the amount of information that
knowing the genotype G provides about the phenotype P is always exactly equal to
the amount of information that knowing the phenotype P provides about the
genotype G (Fig. 1).

Genome Phenotype

Environment

Causal information

Semantic information

Fig. 1 Information theory restricted to a descriptive statistics for correlations. Information flows in both
directions between genotype and phenotype, I(P;G) = I(G;P), and, according to the parity thesis, there is
nothing that privileges genes over environment. In a semantic notion of genetic information, genes
represent phenotypes but phenotypes do not represent genes
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Here it is helpful to consider a simple example. Suppose that the genotype to
phenotype map is degenerate, such that there are n k possible genotypes but only n
possible phenotypes. Now it seems surprising that phenotype would tell us as much
about genotype as genotype can tell us about phenotype. After all, knowing genotype
predicts phenotype exactly, but knowing phenotype leaves us uncertain about which
of k possible genotypes is responsible. The resolution to this puzzle is that mutual
information measures how much an observation reduces our uncertainty, not how
much residual uncertainty we face after making the observation. We can see this
clearly from our example. If we observe the phenotype, this reduces the number of
possible genotypes from a huge number (nk) to a much smaller number (k). If we
observe genotype, this reduces the number of possible phenotypes from n to 1.
Mutual information doesn’t measure the fact that after making our observations there
are k possibilities in one case and only 1 in the other; mutual information measures
the fact that in both cases the observation reduces uncertainty n-fold. Thus assuming
that all outcomes are equally likely, the entropy of genotype H(G) = log n k, the
entropy of phenotype H(P) = log n, and the mutual information is I(G;P) = log k.

An additional critique of the mutual information approach is that it fails to
capture the sense of privilege that biologists often ascribe to the informational
molecule DNA over other contributors to phenotype. So far as causal covariance is
concerned, both genes G and environment E influence phenotype P—and in
principle we can equally well compute either I(G;P) or I(E;P). So it seems that
Shannon theory has no way of singling out DNA as an information-bearing entity.

This criticism is formalized as the parity thesis, and is crafted around an
important result in information theory that the roles of source and channel
conditions are exchangeable (Griffths and Gray 1994). Typically when one sits in
front of the television, the football broadcast is the signal. The weather, a crow
landing on the television antenna, interference from a neighbor’s microwave—these
are sources of noise, the channel conditions for our transmission. But a television
repairman has an opposite view. He doesn’t want to watch the game, he wants to
learn about what is altering the transmission from the station. So he tunes your set to
a station broadcasting a test pattern. For the repairman, this test pattern provides
channel conditions to read off the signal of how the transmission is being altered. As
Sterelny and Griffiths (1999) point out, ‘‘The sender/channel distinction is a fact
about our interests, not a fact about the physical world.’’ The parity thesis applies
this logic to genes and environment. In the parity view, whether it is genome or
environment that carries information must be a fact about our interests, not a fact
about the world.

The problem with these arguments is that they adopt a few tools from Shannon
theory, but neglect its raison d’être: the underlying decision problem of how to
package information for transport. Before delving deeper into Shannon theory, we
will take a brief detour to summarize the semantic sense of information in biology.

Semantic view of information

In addition to the limitations enumerated above, the causal view of biological
information fails to highlight the intentional, representational nature of genes and
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other biological objects (Sterelny and Griffths 1999; Godfrey-Smith 2008; Griffths
and Gray 1994; Shea 2007). When biologists talk about genes as informational
molecules, this argument goes, it is not because they are correlated with other things
(e.g. amino acid sequence or phenotype), but rather because they represent other
things. This semantic sense of information in which ‘‘genes semantically specify
their normal products’’ (Godfrey-Smith 2007) cannot be captured using Shannon
theory, which is by design silent on semantic matters.

But what is it that genes are supposed to represent? Much of the conventional
language of molecular biology suggests phenotypes as an obvious candidate, and
this is the approach that Maynard Smith takes in a target article that triggered much
of the recent debate over the information concept in biology (Maynard Smith 2000).
At first glance, this view has several things to recommend it. A semantic notion of
genetic information captures the directionality discussed above: genes represent
phenotypes but phenotypes do not represent genes (Fig. 1). One could also try to
argue that the semantic view privileges genes in that we can say that genes have a
representational message about phenotype, but environment does not. Finally, it
allows for misrepresentation or false representation, whereas causal information
does not (Griffths 2001).1

Does this mean that the problem is solved? No—Griffths (2001) and Godfrey-
Smith (2008) argue that semantic information remains vulnerable to the parity
thesis. Moreover, Godfrey-Smith (1999, 2008) and Griffiths (2001) note that the
reach of the semantic information concept within genetics is very shallow:
legitimate talk of semantic representation can go no further than genes coding for
amino acids. Beyond this point, the mapping from genotype forward is context-
dependent and hopelessly entangled in a mesh of causal interactions. Thus, these
authors conclude, the relation from genes to phenotype cannot be a representational
one. Accordingly, it seems as if the semantic view of information has been pushed
as far as it will go, and yet we are left without a fully satisfactory account of the
information concept in biology. Let us therefore return to Shannon’s information
theory, but move beyond the causal sense.

A transmission view of information

As we described above, philosophers of biology largely restrict Shannon theory to a
descriptive statistics for correlations. This misses the point. At the core of Shannon
theory is the study of how far mathematical objects such as sequences and functions
can be compressed without losing their identity, and if compressed further, how
much their structure will be distorted. From this foundation in the limits of
compression emerges a richly practical theory of coding: information theory is a
decision theory of how to package information for transport, efficiently. It is a
theory about the structure of those sequences that efficiently transmit information.
And it is a theory about the fundamental limits with which that information can be

1 We think that Stegmann handles the misrepresentation issue even more cleanly with a shallow semantic
notion of genes as conveying instructional, as opposed to representational, content (Stegmann 2004).
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transmitted (Shannon and Weaver 1949; Pierce 1980; Yeung 2002; Cover and
Thomas 2006).

This decision-theoretic view of Shannon theory is missing from the discussions
of information in biology. While Shannon theory is no panacea for geneticists and
evolutionary biologists (Shannon 1956), we will argue that it provides a justification
for information language as applied to genes, and that it also resolves the apparent
and unappealing symmetries of (1) mutual information between genes and
phenotype, and (2) the parity thesis.

In the original formulation of Shannon theory, information is what an agent
packages for transmission through a channel to reduce uncertainty on the part of a
receiver. This information is physically instantiated and spatiotemporally bounded.
Thus, as Lloyd and Penfield (2003) note, information can be sent either from one
place to another, or from one time to another.2 Usually when we talk about sending
information from one place to another, we posit two separate actors, one of whom
sends a message that the other receives; when we talk about sending information
from one time to another, we posit a single agent who stores information that she
herself can later retrieve. But whether the message goes across space or time,
whether there are one or two agents involved, whether we use the language of signal
transmission or the language of data storage, mathematically these are exactly the
same process. Thus in practice, when you package information and then send it
either across the space dimension as a signal or across the time dimension via
storage and retrieval, you are transmitting information.

Think about what happens when you send a message to your friend by burning a
compact disc. Your computer encodes a message onto the digital medium. You send
the medium through a channel (e.g. the postal service). Your friend, the receiver,
puts the CD into her computer, the computer decodes the message, and she hears the
sweet strains of Rick Astley. But it doesn’t matter that you sent the disc through the
mail—all of the mathematical operations that underly the information encoding are
the same whether you send the CD to a friend or save it for your own later use. To
cross space or time, we can encode the same way. Indeed, we use the same error-
correcting codes for storage and retrieval on CDs as we do for sending digital
images from deep space back to Earth (Cipra 1993).

Taking this view of information and transmission, let us return to the proposed
schematic of biological information in Fig. 1. This picture has neither a space
dimension or a time dimension; information is not being sent anywhere. Here we
simply have a correlation (if one takes a causal view) or a translation (if one takes a
semantic view). Thus within the actual Shannon framework, Fig. 1 simply
illustrates a decoder. Likewise, notice that the biological processes underlying the
schematic in Fig. 1 are not the processes that biologists refer to when they talk about
transmission. In biology, transmission genetics is the study of inheritance systems,
not the study of transcription and translation, and genetic transmission is the passing
of genes from one generation to another, not the passing of information from
genotype to phenotype.

2 In practice, it takes time to send information from one place to another, but the conventional Shannon
framework suppresses this time dimension.
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In life and in evolution, the transmission of information goes from generation to
generation to generation as in Fig. 2. Here is the transmission; we know that genes
are transmitted from parent to offspring in order to provide the offspring with
information about how to make a living (e.g. metabolize sugars, create cell walls,
etc.) in the world. This suggests that we can make sense of a large fraction of the use
of information language in biology if we adopt a transmission view of information.3

Transmission view of information:
An object X conveys information if the function of X is to reduce, by virtue of
its sequence properties, uncertainty on the part of an agent who observes X.

As with many aspects of science, the tools and language that we use have a strong
influence on the questions that we think to ask—and once we shift to the
transmission sense of information, our focus changes. When we view biological
information as a semantic relationship, we are drawn to think like developmental
biologists, about how information goes from an encoded form in the genotype to its
expression in the phenotype. But when we talk about the transmission sense of
information, we step out in an orthogonal direction (Fig. 2) and we can now see
information as it flows through the process of intergenerational genetic transmis-
sion.4 And once we do that, we can start to think about natural selection, the
evolutionary process, and how information gets into the genome in the first place
(Szathmary and Maynard Smith 1995).

Symmetry of mutual information

By viewing Shannon information as a result of a decision process instead of as a
correlation measure, we can resolve the concern that Godfrey-Smith raises about the
bidirectional flow of information in Shannon theory. Godfrey-Smith dismisses the
causal sense of information because ‘‘information in the Shannon sense ‘flows’ in
both directions, as it involves no more than learning about the state of one variable
by attending to another’’ (Godfrey-Smith 2008). Here Godfrey-Smith is referring to
the symmetry of the mutual information measure: I(X;Y) = I(Y;X) (Fig. 1).
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nFig. 2 In biology, genetic

transmission occurs vertically
(from parent to offspring to
grandoffspring). It is upon this
axis that the transmission sense
of information focuses

3 A message need not be composed of multiple characters to meet this definition. Even a string of length
one is a sequence; thus even a single character conveys information.
4 Though see Shea (2007) for how a semantic view of information need not be incompatible with a focus
on intergenerational processes such as evolution by natural selection.
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What is the mutual information actually measuring when we apply this equality
in a communication context? An example helps. Peter and Paul are concerned about
the state of the world W. Suppose that Peter observes a correlate X of the random
variable W. We want him to communicate his observation to Paul, and he does so
using a signal Y. The mutual information I(X;Y) tells us how effectively he conveys
what he sees, on average, given the statistical distribution of possible X values, the
properties of the channel across which the signal is sent, etc. Specifically,
I(X;Y) = H(X)-H(X|Y) measures how much Paul learns by knowing Y about what
Peter saw, X, again on average. Because I(X;Y) = H(X)-H(X|Y) = H(X) ? H(Y)-
H(X,Y) = H(Y)-H(Y|X) = I(Y;X), Peter knows exactly as much about what Paul
learns as Paul learns about what Peter saw. But I(Y;X) is usually irrelevant when we
think about the decision problem of communicating. In this context we want Peter to
get a message about the world to Paul, and we rarely care how much Peter knows
afterwards about what Paul has learned.

This directionality is manifested within Shannon theory by the data processing
inequality (Fig. 3; Yeung 2002; Cover and Thomas, 2006). This theorem states that
the act of processing data, deterministically or stochastically, can never generate
additional information. A corollary pertains to communication: along a communi-
cation chain, information about the original source can be lost but never gained. In
the scenario described above, both the observation step W ? X and the
communication step X ? Y are steps in a Markov chain. For any Markov chain
W ? X ? Y, the data processing inequality states that I(W;X) C I(W;Y). In our
example, the data processing inequality reveals that communication between Peter
and Paul is not symmetric. Paul may know as much about what Peter sent as Peter
knows about what Paul received, but Paul does not in general know as much about
what matters—the state of the world—as Peter does. Shannon theory is not
symmetric with respect to the direction of communication.

The parity thesis

In the first part of this paper, we described the parity thesis. While there is a good
case to be made for parity between genes and environment when we restrict our
view to the horizontal development of phenotype from genotype, that parity is
shattered when we look along the vertical axis of intergenerational transmission.

Look at Fig. 2, which corresponds to a neo-Darwinian view of evolution. In this
model of the biological world, the transmission concept cleanly separates genes

Fig. 3 Despite the symmetry of the mutual information I(X;Y) = I(Y;X), the data processing inequality
reveals the directional flow of information in Shannon’s scheme.
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from environments. The former are transmitted across generations, the latter are not.
Moreover, taking a teleofunctional view as Sterelny et al. (1996) do for replicators
in general, the hypothesis that genes are for transmission across generations is richly
supported by the physical structure of the DNA. Genes are made out of DNA, a
molecule that is exquisitely fashioned so as to (1) encode lots of sequence
information in a small space, (2) be incredibly easy to replicate, (3) be arbitrarily
and infinitely extensible in what it can say, and (4) be structurally very stable and
inert (Lewontin 1992). In fact, DNA is perhaps the most impressive known
substance with respect to (1) and (2). No machine can look at a protein and run off a
copy; DNA is exquisitely adapted so that a relatively simple machine, the DNA
polymerase, does this at great speed and with high fidelity. Think about how
amazing it is that PCR works. It is as if you could throw a hard drive in a water bath
with a few enzymes and a few raw materials, run the temperature through a few
cycles, and pull out millions of identical hard drives. DNA practically screams, ‘‘I
am for storage and transmission!’’

One might object that Fig. 2 conveys an over-simplified view of the world. This
is true. A more sophisticated view of the evolutionary process allows for additional
channels of intergenerational transmission and information flow: environments can
be constructed and inherited (Odling-Smee et al. 2003). Non-genetic biological
structures such as membranes and centrosomes are inherited (Griffths and Knight
1998) and can even be argued to carry some information (Griesemer 2005).
Methylation provides an extensive layer of markup on top of nucleic acid sequence.
Developmental switches actively transduce environmental information into epige-
netically heritable forms (Griffths 2001).

But such an objection misses our point. Our aim with the transmission sense of
information is not to single out uniquely the genes as having some special property
that we deny to all other biological structures, but rather to identify those
components of biological systems that have information storage, transmission, and
retrieval as their primary function. Methylation tags are obvious members of this
information-bearing class: they carry information across generations in the
transmission sense, and this appears to be their primary function. Extrinsic features
of the environment such as ambient temperature are obviously not members of this
class: they are not transmitted across generations, they carry information only in the
causal sense and information transmission is not their role under any reasonable
teleofunctional explanation. Biological structures such as membranes and centro-
somes may appear as some sort of middle ground, but we note that (1) their primary
function is not an informational one, and (2) their bandwidth is extremely restricted
compared to that of DNA sequence. Birds’ nests (Sterelny et al. 1996) could be seen
as an environmental analogue to these intracellular structures, whereas libraries start
to push toward genes and methylation tags in their informational capacity.
Developmental switches (Griffths 2001) are another interesting case; these
transduce environmental information but, in addition to their bandwidth limitations,
they appear to have a more limited intergenerational transmission role. Genes may
not be unique in their ability to convey information across generations—but at the
same time a transmission view makes it clear that not all components of the
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developmental matrix (Griffths 2001; Griffths and Gray 1994) enjoy parity in their
informational capacities.

The parity thesis typically is linked to Shannon’s information theory via the
claim that ‘‘The source/channel distinction is imposed on a natural causal system by
the observer.’’ (Griffiths 2001, p.398) What is signal, and what is noise—Sterelny
and Griffths (1999) take this to be merely a reflection of our interests. So must we
impose our own notions of what makes an appropriate reference frame in order to
single out certain components of the developmental matrix as signal and others as
noise? If we want to know how the information necessary for life was compiled by
natural selection, the answer is no. In this case, we are not the ones who pick the
reference frame, natural selection is. Because natural selection operates on heritable
variation, it acts upon some components of the developmental matrix differently
than others.5 For biologists, therefore, the source-channel distinction is imposed not
by the observer but rather by the process of natural selection from which life arose
and diversified.

To better understand the role of natural selection, it helps to expand Fig. 2
somewhat. (For simplicity we retain our focus on the genes as transmitted elements,
but one could extend this to include other heritable structures). In Fig. 2, we
highlight the fact that it is the genes, and not the environment, that are transmitted
from generation to generation. In Fig. 4, we highlight the fact that not all genes are
transmitted to the next generation. It is by the means of variation in the genes and
selection on the phenotypes with which they are correlated that information can
built up in the genome over time (Felsenstein 1971).

Causal information versus transmitted information

One motivation for replacing causal sense-views of information with semantic-
sense views is that the causal sense of information appears to cast too broad of a net.
Any physical system with correlations among its components carries causal
information—but in their use of the information concept, biologists appear to mean
something stronger than the notion of natural meaning that has smoke in the sky
carrying information about a fire below (Godfrey-Smith 2008). If we substitute a
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Fig. 4 Transmission and natural
selection. With the parent send-
ing variant messages to each
offspring and natural selection
acting on the phenotype, infor-
mation can accumulate in the
genome

5 Similarly, Shea (2007) uses this fact to derive teleosemantic meaning in his account of biological
information.
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transmission view of information for a semantic view, will we be driven back to this
overly-broad notion of information? Not at all. Like naturalized views of semantics,
the transmission notion of information rests upon function: to say that X carries
information, we require that the function of X be to reduce uncertainty on the part of
a receiver.

The failure to consider function when talking about information sometimes
generates confusion among practicing biologists. After all, there are correlations
everywhere in biological systems; measuring them is what we do as biologists, and
we often talk about these correlations as information. This language is understand-
able; indeed, these correlations provide us with information about biological
systems. But this is merely causal-sense information (Godfrey-Smith 1999). As
Godfrey-Smith explains, when a systematist uses gene sequences to make
inferences about population history, ‘‘there is no more to this kind of information
than correlation or ‘natural meaning’; the genes are not trying to tell us about their
past.’’ (Godfrey-Smith 1999). In other words, these correlations do not convey
teleosemantic information. Nor can these correlations be considered information in
the transmission sense.

To expand upon this distinction, an example from population genetics is
helpful. Voight and colleagues (Voight et al. 2006) developed a method for
inferring positive selection at polymorphic loci in the human genome. Their key
insight is that, with enough sequence data from sufficiently many members of the
population, we can pick out regions of the genome that have unusually long
haplotypes of low diversity. Such extended haplotype blocks tend to surround an
allele that has recently risen in frequency due to strong selection, because there
has not been enough time for recombination to break down the association
between the favored allele and the genetic background in which it arose. Using
this method, Voight and colleagues find strong evidence for recent selection
among Europeans in the lactase gene LCT, which is important for metabolism of
lactose beyond early childhood. The favored allele results from a single nucleotide
change 14 kb upstream of the lactase gene on the nearly 1 Mb haplotype. Positive
selection has presumably occurred because the ability to process lactase
throughout life became advantageous with the invention of animal agriculture
approximately 10,000 years ago.

What does this have to do with information? There is information about the
history of selection in the population-level correlations. Voight et al. found an
extended haplotype length surrounding the LCT? allele relative to that around the
LCT- allele. But notice that we have to observe the genotypes of multiple
individuals in order to determine that one allele at the LCT locus is surrounded by
longer haplotype blocks than is the other. Once we have made observations of
multiple genomes, we as external observers can conclude something about the
history of selection on the population. But this information is not available at the
level of a single individual. A single individual cannot look at its own genome and
notice a longer (or shorter) haplotype block around any given focal locus—these
haplotype blocks are defined with respect to the genotypes of others in the
population. A single individual can only look at its own genome and see a sequence
of base pairs. This sequence of base pairs is what is transmitted; it is what has the
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function of reducing uncertainty on the part of the agent who observes it.6 These
individual gene sequences are the entities that have an informational function in
biology (though bioinformaticians have not always recognized this distinction
(Adami 2002)). The population-level statistics that geneticists use to infer history
are informative, but they are not information in the transmission sense. They are
merely the smoke that is cast off by the fire of natural selection.

Coding without appeal to semantics

The transmission sense of information allows us to separate claims about how
information is transmitted from claims about what information means.7 Indeed, we
can study how information is transmitted without having any knowledge of the
‘‘codebook’’ for how to interpret the message, or even what the information
represents.

In many biological studies, we are in exactly this position. Again an example—
this time drawn from neurobiology—is helpful. In a study of the fly visual system,
de Ruyter van Steveninck et al. (1997) presented flies with a moving grating as a
visual stimulus, and made single-cell recordings of the spike train from the H1
visual neuron. This neuron is sensitive to movement, but it is not known how
movement information is encoded into the spike train, nor even what aspects of
movement are being represented. Nonetheless, de Ruyter van Steveninck and
colleagues were able to determine how much information this neuron is able to
encode. The investigators exposed a fly to the stimulus, and measured the (average)
entropy of the spike train. This is the so-called total entropy for the neuron’s output.
They then looked at what happens if you play the same stimulus back repeatedly:
how much does the resultant spike train vary from previous trials? This is the so-
called noise entropy. The information that the spike train carries about the stimulus,
i.e., the mutual information between spike train and stimulus, is simply the
difference in these two quantities. Using this approach, the authors were able to
show that this single insect neuron conveys approximately 80 bits of information per
second about a dynamic stimulus. Thus an individual visual neuron achieves a bit-
rate that is roughly 7 times the bit rate of a skilled touch typist!8 More importantly,
the researchers were able to compare the response of this neuron to static stimuli

6 Although causal-sense information is transmitted from the population at time t to the population at time
t?1 in the population frequencies of haplotypes, this is not transmission-sense information because the
function of these population-level haplotype assemblages is not to reduce uncertainty on the part of future
populations.
7 The source-channel separation theorem (Cover and Thomas 2006, Chapter 7, p.218) proves that in any
physical communication system for error-free transmission over a noisy channel, one can entirely
decouple the process of tuning the code to the nature of the specific channel from not only the semantic
reference of the signal but, indeed, from all statistics of the message source. This follows because the
theorem states that one can achieve channel capacity with separate source and channel coders—and in
this setup, the source coder can always be configured so as to return output that maximizes the entropy
given the symbol set.
8 Using Shannon’s 1950 upper bound on bits per letter and his estimate of letters per word in the English
language (Shannon 1950), we can estimate the bit rate of a touch typist as 120words

minute
1minute

60 seconds4:5 letters
word

1:3 bits
letter ¼ 11:7 bits/second:
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with the response of the neuron to natural patterns of motion. They found that, for
natural patterns, the neuron is able to attain the high bandwidth that it does by
‘‘establishing precise temporal relations between individual action potentials and
events in the sensory stimulus.’’ By doing so, the neuron’s response to the dynamic
stimulus greatly surpasses the bit rate that could be obtained if the stimulus were
encoded by a simple matching of spike rate to stimulus intensity. Subsequent
investigators have used related methods to show that evolved sensory systems are
tuned to natural stimuli, to study the properties of neural adaptation and history
dependence, and to examine temporal sensitivity—all without knowing the way in
which the signals that they study are actually encoded.

de Ruyter van Steveninck et al. (1997) sum up the power of being able to study
information without appeal to semantics: ‘‘This characterization of ... information
transmission is independent of any assumptions about [or knowledge of!] which
features of the stimulus are being encoded or about which features of the spike train
are most important in the code’’.

This brings us back to Shannon theory. When information theorists think about
coding, they are not thinking about semantic properties. All of the semantic
properties are stuffed into the codebook, the interface between source structure and
channel structure, which to information theorists is as interesting as a phonebook is
to sociologists. When an information theorist says ‘‘Tell me how data stream A
codes for message set B,’’ she is not asking you to read her the codebook. She is
asking you to tell her about compression, channel capacity, distortion structure,
redundancy, and so forth. That is, she wants to know how the structure of the code
reflects the statistical properties of the data source and the channel with respect to
the decision problem of effectively packaging information for transport.

With these things in focus, we can now look at the concept of arbitrariness, what
it means, and why this concept is critically important in biological coding.

Information theory and arbitrariness

In arguing that DNA is an informational molecule, Maynard Smith (Maynard Smith
2000) appeals to Jacques Monod’s concept of gratuité (Monod 1971), and a number
of additional authors have further explored this thread (Godfrey-Smith 2000a, b;
Stegmann 2005). For Monod, gratuité was an important component of the logical
structure of his theory of gene regulation. Gratuité is the notion that, in principle,
regulatory proteins can cause any inducer or repressor to influence the expression of
any region of DNA. There need be no direct chemical relation between the structure
of an inducer and the nucleic acid sequence on which it operates. Maynard Smith
observes that we can see something like gratuité in the structure of the genetic code
as well: there is an arbitrary association between codons and the amino acids that
they specify.

Yet as they grapple with this idea of an arbitrary code, these authors confront the
fact that the genetic code is not a random assignment of codons to amino acids, but
rather a one-in-a-million evolved schema for associating these molecules: the
genetic code is structured so as to smooth the mutational landscape (Sonneborn
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1965) and ensure that common translational errors generate amino acid replace-
ments between chemically similar amino acids (Freeland and Hurst 1998; Woese
1965; Haig and Hurst 1991). So what can these authors mean when they say that the
code is arbitrary? Maynard Smith, Godfrey-Smith, and others are not suggesting
that the structure of the code is random or contingent on random historical
processes, as in Crick’s frozen accident hypothesis. Rather, they are making a
semiotic claim. Arbitrariness refers to the fact that ‘‘[m]olecular symbols in biology
are symbolic,’’ as opposed to indexical or iconic (Maynard Smith 2000). In the case
of the genetic code, this means that the association between a codon and its
corresponding amino acid is not driven by the immediate steric interactions between
the codon and the amino acid, but instead is mediated by an extensive tRNA
structure that in principle could have coupled this codon to any other amino acid
instead.

This fact is enormously important to the function of the biological code—not as a
matter of the semiotic classifications that fascinated Charles Pierce, but rather to
solve the sort of decision problem that motivated Claude Shannon. From the
symbolic relation between code and product, there arise the degrees of freedom that
a communication engineer requires to tune the code to the statistical properties of
source and channel. To see how this works we will visit an example from the early
history of telecommunications.

For over one hundred years, Morse code was the standard protocol for telegraph
and radio communication. The code transcribes the English alphabet into codewords
composed of short pulses called dots and long pulses called dashes. For example,
the letter E is represented by a single dot ‘‘.’’, the letter T is represented by a single
dash ‘‘-’’, the letter Q by the quartet ‘‘- -.-’’, and the letter J by ‘‘.- - -’’. At first
glance, the mapping between letters and Morse codewords appears to be arbitrary.
They are certainly symbolic rather than iconic or indexical. But there is an
important pattern to the way that letters are assigned codes in Morse code.

Instead of assigning codewords sequentially (‘‘.’’ to A, ‘‘-’’ to B, ‘‘..’’ to C)
Samuel Morse exploited the degrees of freedom available for codeword assignments
to make an efficient code for fast transmission of English sentences. He could not
assign short code words to every single letter—there simply are not enough short
code words to go around. Instead, by assigning the shortest code words to the most
commonly used letters, Morse created a code in which transmissions would on
average be shorter than if he had used sequential codeword assignments.

Morse could not have done this with pictograms. The leeway to associate any
message with any code word provides the communications engineer with the
degrees of freedom that he needs to tune the semantic and statistical properties of
the source messages to the transmission cost and error properties of the channel. In
the absence of a full picture of the engineer’s decision problem, the code might look
arbitrary. But a well-chosen code is not arbitrary at all; it solves a decision problem
for packaging.

Morse exploited the available degrees of freedom in his choice of codes;
apparently, natural selection has done the same in evolving a one-in-a-million
genetic code. Thinking about these degrees of freedom—along with an important
thought experiment—helped us to understand the role of coding in the transmission
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sense of information. Godfrey-Smith (2000a) imagined a hypothetical world
composed of ‘‘protein genes’’ as a way to explore the importance of the coding
concept in biology. Since the idea of coding presumably refers to the fact that DNA
provides an arbitrary combinatorial representation of amino acid sequence,
Godfrey-Smith considers the nature of a world in which the hereditary material
neither arbitrary nor representational. He imagine a world of ‘‘protein-genes’’ in
which there is no translation, but instead a copying system in which amino acid
sequences, assisted by coupling molecules, replicate using previous amino acid
sequences as templates. In that world, Godfrey-Smith argues, there is nothing that
corresponds to coding, and yet stepping away from the microscope, biology
functions much as before. In Godfrey-Smith’s protein-sample world, there is no
code, no compression, no redundancy, and information theory can merely be applied
as a descriptive statistics for correlations. One could even go so far as to argue that
in a protein-genes world, physical structure and not information is inherited across
generations. Thus, Godfrey-Smith concludes that ‘‘Removing genetic coding from
the world need not change much else, and this gives support to my claim that we
should only think of coding as part of an explanation of how cells achieve the
specific task of putting amino acids in the right order,’’ rather than something
fundamental to the logical structure of biology.

But there is a critical difference between a world with a proper genetic code and a
world based upon protein-genes: only the former allows an arbitrary combinatorical
mapping between templates and products. From an information-theoretic perspec-
tive, this is absolutely critical. The degrees of freedom to construct an arbitrary
mapping of this sort turn the problem of code evolution from one of passing
physical samples to the next generation into a decision-theoretic problem of how to
package information for transport. In the protein-genes world, the fidelity of
transmission is at the mercy of the biochemical technology for copying. There are
no degrees of freedom for structuring redundancy, minimizing distortion, or
conducting the other optimization activities of a communications engineer. In a
DNA-based code, the chemically arbitrary assignments of nucleotide triplets to
amino acids via tRNAs offer the degrees of freedom to do all of the above. While
the precise dynamics of code evolution remain unknown, it appears that natural
selection has put these degrees of freedom to good use.

For example, during the early evolution of the genetic code when the translation
mechanism was highly inaccurate, there was not only selection to minimize the
effect of misreads (Woese 1965), but also selection to minimize the effect of frame-
shift errors. Frame-shift errors waste resources by generating potentially toxic
nonsense polypeptides. There is therefore a fitness advantage to codes that quickly
terminate after a frame-shift by reaching a stop codon (Seligmann and Pollock
2004). Itzkovitz and Alon (2007) have shown that of the 1152 alternative codes that
are equivalent to the real code with respect to translational misreads (the real code
with independent permutations of the nucleotides and wobble-base constraint), only
8 codes encounter a stop codon earlier after a frame-shift than does the real code.
Because in the real code, stop codons overlap with common codons, the length of
nonsense peptides are on average 8 codons shorter than in alternative codes.
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Even with the genetic code fixed in its present form, natural selection can still
make use of the degrees of freedom that are available when selecting which of
several synonymous codons to use. For example, there is strong positive correlation
both between synonymous codon bias and gene expression level and between tRNA
abundance and codon usage in S. cerevisiae and E. coli (Bennetzen and Hall 1982;
Ikemura 1981; Sharp and Li 1987). While the underlying mechanisms for the
correlations are not fully understood, simple models of mutation and selection can
explain much of the observed variance (Knight et al. 2001; Bulmer 1987).

As another intriguing example, Mitarai et al. (2008) have found that the choice of
synonymous codons along the length of a gene operates to prevent ‘‘traffic
congestion’’ by ribosomes moving down the mRNA, potentially increasing
expression rates and minimizing incomplete translation of proteins. This works as
follows. Some codons are translated faster than others. For instance, Sørensen and
Pedersen (1991) have shown that the difference in translation rates between the two
synonymous glutamate codons GAA and GAG is threefold. Just as the relative
position of fast and slow regions of highway influence the rate at which traffic can
travel and the amount of traffic congestion that occurs, the relative positions of
rapidly and slowly translated codons will influence the rate at which ribosomes can
move along an mRNA and the amount of congestion that they experience. If rapidly
translated codons were to occur early in a gene and slowly translated ones were to
occur late, numerous ribosomes could load on the mRNA, race through the early
part of the gene, but then back up against one another when the slower codons were
reached toward the gene’s end. At best this would cause congestion and slow-down;
at worst, incomplete translation as the blocked ribosomes disengage from the
mRNA. If instead slowly translated codons occur early and rapidly translated ones
occur late, more ribosomes can pass along the mRNA in a given time window, and
less congestion arises. Looking at highly-expressed genes in E. coli, Mitarai et al.
(2008) have found evidence of exactly this pattern; there appears to have been
selection for using slower synonymous codons in the beginning of these highly
expressed genes.

The difference between a protein-genes world and a DNA-based world became
clear by taking the perspective of a communications engineer. Throughout the
paper, this has been our approach. Correlations, symmetry of mutual information,
the parity thesis, arbitrariness, coding—all of these come into focus from a
communications viewpoint. We see what makes the genetic code a code, and we get
a new perspective on the information language that is part of the everyday working
vocabulary of researchers in genetics and evolutionary biology. The transmission
sense of information justifies such language as more than shallow metaphor.
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